Library Imp_LangTrick.Imp.Imp_LangLogPropDec
From Coq Require Import Arith Eqdep_dec.
From Imp_LangTrick Require Import Imp_LangTrickLanguage Imp_LangLogProp.
From Imp_LangTrick Require Import LogicProp LogicPropDec.
Ltac unfold_logic_prop_defs :=
unfold UIP_LogicPropAexpImp_Lang.LP.lp_t in *;
unfold UIP_LogicPropAexpImp_Lang.LP.A in *;
unfold UIP_LogicPropAexpImp_Lang.LP.V in *;
unfold UIP_LPBexpImp_Lang.LP.lp_t in *;
unfold UIP_LPBexpImp_Lang.LP.A, UIP_LPBexpImp_Lang.LP.V in *.
Axiom UIP_AbsEnv :
forall (l1 l2: AbsEnv)
(p1 p2: l1 = l2),
p1 = p2.
Lemma UIP_AbsEnv_refl :
forall (l: AbsEnv)
(p: l = l),
p = eq_refl.
Proof.
intros.
pose proof (UIP_AbsEnv).
specialize (H l l p (@eq_refl _ l)).
eassumption.
Qed.
From Imp_LangTrick Require Import Imp_LangTrickLanguage Imp_LangLogProp.
From Imp_LangTrick Require Import LogicProp LogicPropDec.
Ltac unfold_logic_prop_defs :=
unfold UIP_LogicPropAexpImp_Lang.LP.lp_t in *;
unfold UIP_LogicPropAexpImp_Lang.LP.A in *;
unfold UIP_LogicPropAexpImp_Lang.LP.V in *;
unfold UIP_LPBexpImp_Lang.LP.lp_t in *;
unfold UIP_LPBexpImp_Lang.LP.A, UIP_LPBexpImp_Lang.LP.V in *.
Axiom UIP_AbsEnv :
forall (l1 l2: AbsEnv)
(p1 p2: l1 = l2),
p1 = p2.
Lemma UIP_AbsEnv_refl :
forall (l: AbsEnv)
(p: l = l),
p = eq_refl.
Proof.
intros.
pose proof (UIP_AbsEnv).
specialize (H l l p (@eq_refl _ l)).
eassumption.
Qed.