Equality Saturation Theory Exploration à la Carte

Synthesize better rewrite rulesets!

Anjali Pal, Brett Saiki, Ryan Tjoa*, Cynthia Richey*, Amy Zhu, Oliver Flatt, Max Willsey, Zachary Tatlock, Chandrakana Nandi

Equality saturation uses rewrite rules for program optimization, verification, synthesis, etc.

How do we discover rewrite rules?

ENUMO: a theory exploration DSL

Infer rules *incrementally* using <u>composable</u> search operators, even without an interpreter.

Metric for proving power; see §4.3

Derivability vs. Ruler (prior SOTA) for common theories:

Domain	$ENUMO \rightarrow Ruler$	Ruler \rightarrow ENUMO
bool	100%	87.5%
bv4	100%	38.3%
bv32	100%	58.3%
rational	100%	62.6%

Evaluation & Case Studies

Herbie: 35% higher accuracy than with Ruler

 $a + b \rightsquigarrow \frac{a \cdot a - b \cdot b}{a - b}$

$$\cos(b+a) \rightsquigarrow \cos b \cdot \cos a - \sin b \cdot \sin a$$
$$\left(c^{b}\right)^{\log a} \rightsquigarrow \left(a^{b}\right)^{\log c}$$

 $Scale(a, b, c, Trans(d, e, f, s)) \rightsquigarrow Trans(da, eb, fc, Scale(a, b, c, s))$

 $\operatorname{Cube}(ad, be, cf) \rightsquigarrow \operatorname{Scale}(a, b, c, \operatorname{Cube}(d, e, f))$

Szalinski: shrink CAD programs by 87% (expert-written identities shrink by 90%)

