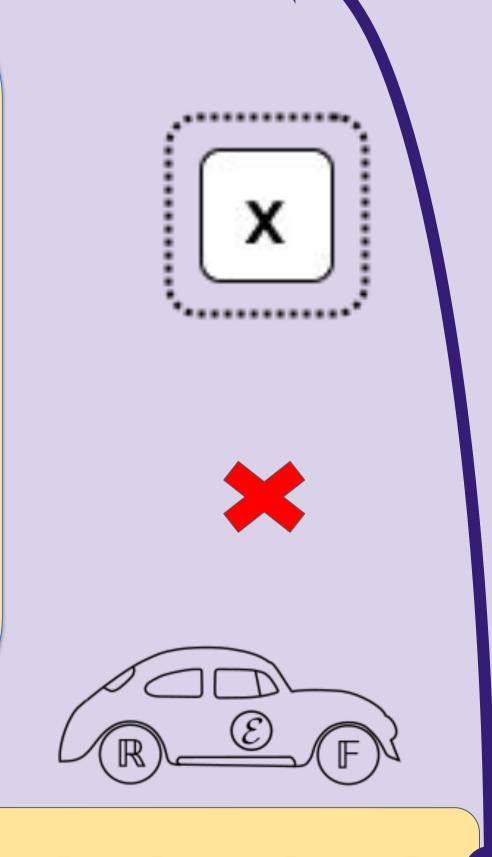
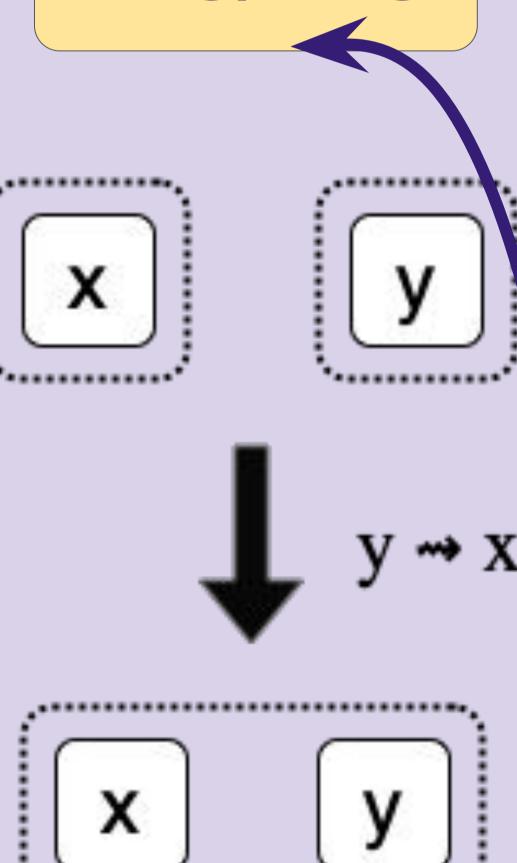
What is a "Good" Ruleset? Comparing Rulesets Using Equality Saturation

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

45PLSE

Cynthia Richey, gannet@cs.washington.edu


- → An e-graph is a data structure that represents sets of equivalent terms.
- → Equality saturation: a technique that uses an e-graph to apply rewrite rules *non-destructively*.
- → For equality saturation to be effective, a compact, useful set of rewrite rules (a "ruleset") is necessary.
- → How do we decide if a ruleset is good?


A rule, $r(x \rightarrow y)$, is **derivable** by a ruleset R if x and y are determined to be equivalent following the application of rules in R.

- → We can define different versions of derivability by changing the initial state of the e-graph.
- → Resource limits make a big difference!

LHS x ** y y	y ** z y z	LHS/RHS x ** y x	х
LHS/RHS takes fewer iterations of	·		z
equality saturation!			
but performance is	LHS	LHS/RH	
only half the story.			

Initializing the e-graph with the left and right-hand side of r results in $y \rightarrow x$ deriving $x \rightarrow y$; using just the LHS, we can never derive it!

 Domain	$R1 \rightarrow R2$ (lhs, lhs-rhs)	$R2 \rightarrow R1$
bool	100%, 100%	87.5%, 96.9%
bv4	100%, 100%	38.3%, 41.1%
bv32	100%, 100%	58.3%, 60.0%
rational	97.3%, 100%	52.0%, 58.5%

Good for optimization!

Good for equivalence-checking!