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Abstract—Reasoning on immutability is important for prevent-
ing bugs, e.g., in multi-threaded software. So far, static analysis
to infer immutability properties has mostly focused on individual
objects and references. Reasoning about fields and entire classes,
while significantly simpler, has gained less attention. Even a
consistently used terminology is missing, which makes it difficult
to implement analyses that rely on immutability information. We
propose a model for class and field immutability that unifies
terminology for immutability flavors considered by previous work
and covers new levels of immutability to handle lazy initialization
and immutability dependent on generic type parameters. We
implement CiFi, a set of modular, collaborating analyses for
different flavors of immutability, inferring the properties defined
in our model and propose a benchmark of representative test
cases for class and field immutability. We use the benchmark to
showcase CiFi’s precision and recall, in comparison to state of the
art, and use CiFi to study the prevalence of immutability in real-
world libraries, showcasing the practical quality and relevance
of our model.

Index Terms—field immutability, class immutability, static
analysis, lattices

I. INTRODUCTION

Immutability is the property of a program element stating
that it is unchangeable or not changed after its creation [1].
The immutability property is important for program correctness
and security: Immutable data structures are not prone to race
conditions in multi-threaded applications [2]–[4]. Immutable
values are less prone to security issues, hence recommended by
the Secure Coding Guidelines for Java SE [5]. Some APIs, like
Java’s Map interface, assume objects, used as keys, not to be
mutated1 [6]. Immutability is also a prerequisite for precisely
deriving other properties, e.g., method purity [7], [8].

In this paper, we focus on immutability of classes and
fields. Previous research on immutability has often focused
on individual objects and references [8]–[12]. However, it
has been argued [13], [14] that focusing on classes and
fields simplifies the implementation of systems that enforce
immutability restrictions2 and their usage by developers.

We address the following limitations of the state of the art
in checking and enforcing class and field immutability.

First, existing approaches address only individual specific lev-
els of immutability. For instance, with their final, resp. val

1Mutations that don’t effect equals() comparisons are allowed.
2Immutability restrictions can be, e.g., in the form of annotations.

annotations, the Java and Scala programming languages support
a weak level of immutability called non-assignability [1], [8].
Coblenz et al. [14] and Porat et al. [15] deal only with transitive
immutability, where every value referred to directly or transi-
tively by a transitively immutable class or field is immutable.
Nelson et al. [16], on the other hand, deal with non-transitive
immutability of fields, where non-transitive immutability only
guarantees that the respective field is non-assignable. However,
none of the approaches handles both transitive and non-
transitive immutability. Second, existing approaches do not
properly cover common programming patterns, as we elaborate
in Section II. Examples of programming patterns that are
not properly handled are lazy initialization and generic type
parameters often found in collections and collection-like classes
(e.g. java.util.Optional). With lazy initialization (cf.
Listing 1), a field is assigned only when it is accessed for the
first time. Here, the field cannot just be restricted to assignments
in the class’ constructor. In turn, care has to be taken to ensure
that really only a single initialization can be performed. Also,
it has to be ensured that the field cannot be observed before
its initialization, as observing different values before and after
initialization contradicts the guarantees that immutability aims
to provide. Generic classes require special treatment, too, as
their immutability depends on the immutability of their type
parameters. In Listing 2, the immutability of class Generic
depends on the type parameter T of the final field t.

1 class C {
2 private Object object;
3 public synchronized Object getObject() {
4 if (object==null)
5 object = new Object();
6 return object;
7 } }

Listing 1. Thread-safe Lazy Initialization Example

1 class Generic<T> {
2 private final T t;
3 public Gen(T t){ this.t = t; } }

Listing 2. Dependently Immutable Class Example

Last but not least, we lack a common model that provides
unified terminology for different levels of class and field im-
mutability. For instance, deep respectively shallow immutability



are used [1], or just immutability [17] to refer to the same
concepts as (non)-transitive immutability. Hence, we need a
unified model that not only considers trivial cases, like final
fields with immutable types, but also common programming
patterns such as lazy initialization and generic classes.

The work presented here addresses the above limitations.
First, we define a model for class and field immutability
that incorporates all relevant levels of immutability and
precisely defines their meaning and relations, thus establishing
a consistent terminology. Second, based on the model, we
define CiFi, a set of modular, independent, collaborating static
analyses to infer the different levels of immutability for fields
and classes, including entire class hierarchies. CiFi uses the
OPAL framework [18] and can be used directly by developers
to reason about codebases or by further analyses.

We evaluate our work along several dimensions. First, we
demonstrate the expressiveness of the proposed model by
categorizing it along the classification system for immutability
support proposed by Coblenz et al. [13]. Second, we
evaluate CiFi against CiFi-Bench, a set of handcrafted test
cases annotated with immutability properties. To the best
of our knowledge, such a benchmark did not exist yet –
CiFi-Bench can be used to guide and test other analyses of
class and field immutability. We use it to evaluate Glacier, the
state of the art in class- and field-immutability enforcement,
to compare its precision and recall with those of CiFi. Finally,
we investigate the extent to which immutability flavors and
levels defined in our model (e.g., class and field immutability,
respectively mutable, or (non-)transitively immutable) are
found in real-world libraries. In short, we show that CiFi (i)
precisely identifies important immutability patterns, while
soundly over-approximating remaining edge cases, (ii) thereby
clearly outperforms Glacier, and (iii) identifies significant
amounts of immutable data in real-world libraries.

To recap, our contributions are:
• A literature survey on the definitions and terminology

used for class and field immutability (Section II).
• A comprehensive, fine-grained lattice-based model of all

relevant levels of class and field immutability (Section III).
• CiFi, a set of modular, collaborating static analyses that

infer the properties defined in the model (Section IV).
• A handcrafted benchmark to serve as a ground truth for

class and field immutability analyses (Section V-B1).
• An extensive evaluation of CiFi based on the benchmark,

real-world libraries, and the state of the art (Section V).
We discuss threats to validity in Section VI, present further

related work regarding object and reference immutability in
Section VII, and conclude the paper in Section VIII.

II. STATE OF THE ART

We survey prior work on different levels of field and class
immutability. In lack of an existing consistent terminology, we
use the original names for the considered levels.

Weak levels of immutability enforcement have been part of
programming language design since decades. In Scala, fields

can be declared with the keyword val which corresponds
to Java’s final modifier. These constructs prevent the field
from being reassigned, but give no guarantee that the object
referenced by the field is immutable. With case classes in Scala
and Records [19] introduced in Java 16, these languages also
offer classes that store data in fields that, implicitly, cannot be
reassigned. However, mutable objects can be assigned to them.
To sum up, while the above language features underline the
importance of immutability, they enforce only weak guarantees
that other authors call non-assignability [1], [8].

Potanin et al. [1] introduce the terms shallow and deep
immutability to distinguish between non-assignable fields
referring to mutable objects or arrays (shallow) and non-
assignable fields (transitively) referring to objects or arrays
that cannot be mutated either (deep). Listing 3 illustrates
both cases. The final (non-assignable) field s refers to a
java.util.String (known to be deeply immutable), thus,
s is deeply immutable. In contrast, the public field iArr refers
to an array that can be mutated outside its class (arrays are
mutable), thus, iArr is shallowly immutable.

1 public final String s = ”string”; // deeply immutable
2 public final int[] iArr = {42}; // shallowly immutable

Listing 3. Deep/Shallow Immutability Example

Coblenz et al. [13] use different terms for the same immutability
concepts, namely non-transitive for shallow and transitive for
deep. Their Glacier [14] system uses annotations for Java
classes and fields, with @Immutable enforcing transitive
immutability and @MaybeMutable stating that a field or
class is not guaranteed to be transitively immutable. Gordon et
al. [2] call transitively immutable fields just immutable, whereas
Nelson et al. [16] use the term immutable for final fields,
i.e., fields only guaranteed to be non-transitively immutable.

Glacier has no direct support for non-assignability or non-
transitive immutability, arguing that non-transitive immutability
provides only weak guarantees [13]. In order for a class C to be
@Immutable in Glacier, (a) all fields of C must be transitively
immutable and may only be assigned in the class’ constructors,
and (b) C must have only @Immutable subclasses. Because
of (a), Glacier cannot handle cases where fields are assigned
outside a constructor, e.g., in lazy initialization. For generic
classes annotated as @Immutable, Glacier enforces that type
parameters are instantiated with @Immutable types. This is
overly conservative, as type parameters do not necessarily
influence a class’ immutability. Also, it prevents generic
immutable classes such as immutable collections from being
annotated @Immutable if they are used to store mutable or
non-transitively immutable data.

Porat et al. [15] propose an inter-procedural data-flow
analysis to detect transitively immutable classes and fields
in Java. According to their definition, a field is immutable if
its value or referee is not mutated after being assigned in the
static initializer or constructor. Like Glacier, this restrictive
immutability definition cannot handle lazy initialization. A
class is said to be immutable, if all of its non-static fields are
immutable. The approach was implemented and evaluated on



the Java Development Kit (JDK) 1.2 (released in 1998); thus,
it lacks support for newer features of Java, e.g., generics.

Kjolstad et al. [17] use the term immutable for classes
that have only transitively immutable instance fields. Their
refactoring tool Immutator transforms mutable classes to
immutable ones in order to benefit from the guarantees provided
by transitive immutability. To ensure that all fields are initialized
in the constructor, Immutator adds two new constructors: A
public one without parameters initializes all fields with a default
value and a private one takes an initialization parameter for each
field. Finally, it rewrites all methods mutating the transitive
state into factory methods and all client methods such that they
access class instances in an immutable way. Immutator makes
transformed classes final to prohibit mutable subclasses.
Thus, the refactoring is limited to classes without subclasses.
With fields made final, lazy initialization is not possible.
Also, Immutator does not handle generic classes.

� The survey of the state of the art in analyzing class and field
immutability reveals that we lack a consistent terminology for
class and field immutability. While some authors use either
deep and shallow, others use transitive and non-transitive.
Still others use immutable with different meanings.
� None of existing approaches can simultaneously handle
both non-transitive and transitive immutability. Also, none
of the presented approaches can recognize lazy initialization
and properly handle immutability of generic classes.
� Each approach focuses on a fixed composition of im-
mutability flavors, e.g., class and field immutability, and
a single level—most often transitive immutability—and it is
not possible for client analyses to get information for other
immutability flavors or levels.

III. MODEL

We present our unified lattice model of immutability prop-
erties for fields, classes, and types along with their order and
relations. We exemplify the properties with Java code snippets,
but the model can be used for any object-oriented language.

A. Field Assignability

Potanin et al. [1] define assignability to indicate whether a
field is or can be reassigned after it is initialized. We extend on
that, defining several levels of assignability which we elaborate
below. Their order is illustrated in Fig. 1.

1) (Effectively) Non-Assignable Fields: Fields can explicitly
be enforced to be non-assignable, e.g., using Java’s final
keyword, or can be effectively non-assignable because there is
no reassignment present and none can be added through other
code that is not analyzed.

Definition 1: A field is non-assignable if it is only assigned
once and cannot be reassigned.

Definition 2: A field is effectively non-assignable if it cannot
be observed with different values.

This distinction allows to find fields that are not yet enforced
to be non-assignable but could be made so. Examples for both
cases are given in Listing 4. The field imm (Line 2) is final

assignable

unsafely lazily initialized

lazily initialized

effectively non-assignable

non-assignable

Fig. 1. Field-Assignability Lattice

and, thus, it is only assigned once (during the execution of
the implicit constructor). As a result, it cannot be reassigned.
Similarly, the field effImm (Line 3) is initialized only once and
is never reassigned again. As effImm is declared private,
no code outside of class C can assign to it, thus rendering it
effectively non-assignable.

1 class C {
2 private final int imm = 42;
3 private int effImm = 42; }

Listing 4. (Effectively) Non-Assignable References

2) Lazily Initialized Fields: This is a common pattern used
to avoid the cost of computing or storing a value if it is
never accessed, while performing the computation only once
if it is accessed repeatedly. It is often implemented by a field
accessible only through a single method that only computes
and stores the value if the field still has its default value.

An example of a lazily initialized field was given in Listing 1.
As the field object is private, no other code can access the
field except through the method getObject. This method will
initialize the field object only if its value is still null. As
the method is synchronized, it is guaranteed that the field
is only initialized once, even in the presence of multi-threaded
execution. Without the synchronized annotation, the field
object could be assigned to more than once. This happens if
concurrent threads each see object at its default state (null)
in Line 4 before any of them performs the assignment in Line 5.
In this case, each thread may assign a different instance to
object, with only the last assignment being persistent. Yet,
for programs known to be single-threaded, one can still provide
a valuable guarantee. For this reason, we define two properties
related to lazy initialization: lazily initialized (Definition 3)
and unsafely lazily initialized (Definition 4):

Definition 3: A field is lazily initialized, if its lifetime can
be divided into two distinct phases: During the first phase,
no accesses to the referenced value are made except to check
whether the field must be transferred to the second phase.
During the second phase, the field is effectively non-assignable.

Definition 4: A field is unsafely lazily initialized if, as long
as only one thread accesses it, its lifetime can be divided into
two distinct phases: During the first phase, no accesses to the
referenced value are made except to check whether the field
must be transferred to the second phase. During the second
phase, the field is effectively non-assignable.



3) Assignable Fields: Assignable is the top (least precise)
value of the field-assignability lattice:

Definition 5: A field is assignable if none of the previous
definitions apply.

Fig. 1 gives the lattice order of the previously defined levels
of assignability based on the provided guarantees: While non-
assignable fields cannot be assigned outside the constructor,
effectively non-assignable fields could be reassigned but
provably are not. In turn, (unsafely) lazily initialized fields
are reassigned once but can only be observed before they are
initialized by the check for the default value.

B. Field Immutability

Field immutability combines assignability of a given field
f with the immutability of f’s value. Our lattice for field
immutability is shown in Fig. 2. The top (least precise) value
of the field-immutability lattice is mutable:

Definition 6: A field is mutable if and only if it is assignable.
For the purpose of this definition, we treat an unsafely lazily

initialized field as assignable if it is unknown whether multiple
threads might access the field.

If a field f is not assignable, its immutability depends on the
immutability of the values f can potentially refer to. Primitive
values are always immutable. Array values are mutable (Java
has no concept of immutable arrays), hence, the immutability
of a field f that refers to an array arr depends on whether
arr or any of its elements is actually mutated or could be
mutated by unknown code. The same applies to objects values,
too. However, unlike arrays, for some objects it is possible
to infer whether such mutation is actually possible either by
inspecting the static type of f or by analyzing the potential
runtime types of objects that f may refer to. Line 2 in Listing 5
illustrates a non-assignable field that refers to an array that is
not and cannot be mutated. Line 3 illustrates a non-assignable
field of type java.lang.String—known to be immutable.

1 class C {
2 private final int[] iArr = new int[]{1,2,3,4};
3 private final String finalString = ”final string”; }

Listing 5. Field Immutability Example

Our immutability lattice distinguishes between transitively
immutable and non-transitively immutable fields:

Definition 7: A field is transitively immutable if it is not
assignable and no object (or array) that can transitively be
reached through the field can ever be mutated.

Definition 8: A field is non-transitively immutable if it is
not assignable, but objects (or arrays) transitively reachable
through the field might be mutated.

Finally, we define the level dependently immutable, which
models the effect of generic types on immutability. A field
that is not assignable (including unsafely lazily initialized only
if it is known that only one thread accesses the field) with
a generic type T (i.e., private final T t;) can either
be transitively or non-transitively immutable depending on the
concrete runtime type of T. Thus, we say that such a field is

mutable

non-transitively immutable

dependently immutable

transitively immutable

Fig. 2. Field Immutability Lattice

dependently immutable. The property dependently immutable
is—as generic types are—parameterized over types that influ-
ence the reference’s immutability, e.g., above generically typed
field t is said to be dependently immutable for T.

Definition 9: A field is dependently immutable if it is not
assignable and the (transitive) immutability of the referenced
object depends on at least one generic type parameter.

C. Class and Type Immutability

To determine whether a field is transitively immutable or
not, we need information about class and type immutability.
Class immutability takes the same values as field immutability,
i.e., the ones given in Fig. 2 and is defined through field
immutability as follows:

Definition 10: The immutability of a class is the least
upper bound (join) of the immutability of all of its instance
fields, respecting specialization of generic types for dependently
immutable fields.

As a corollary, class immutability is the least upper bound
(join) of the immutability of all possible instances of that class
(because the instance fields’ immutability is determined by
the immutability of their values, which make up the state of
the class’ instances). Not all instances of a class necessarily
have the same immutability property. The following factors
can lead to a more precise immutability of a particular instance
in comparison to the immutability of its class:

Firstly, while some instance field f of a class C may, in
general, not be effectively non-assignable, it may provably not
be assigned to for a particular instance o. This is e.g., the case,
if no method that mutates f ever gets invoked on o. Secondly,
during the creation of a particular instance o of a generic
class, type parameters can be substituted for concrete types.
This determines whether dependently immutable fields of o
are actually transitively or non-transitively immutable. Finally,
while the declared type of a field f might not be transitively
immutable, the concrete object assigned to f can be, in which
case f becomes transitively immutable after assignment. Thus,
an instance of a class with fields that are not transitively
immutable can still be transitively immutable depending on how
it is created. This is illustrated in Listing 6. Depending on the
constructor used, the field nonTransitive in Line 1 can be
assigned either a MutableClass or an ImmutableClass
instance. While an instance of C created with the first
constructor is non-transitively immutable, one created with
the second constructor is transitively immutable.
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Fig. 3. Analysis Dependencies

1 class C { private final Object nonTransitive;
2 public C(MutableClass mc) { nonTransitive = mc; }
3 public C(ImmutableClass ic) { nonTransitive = ic; } }

Listing 6. Non-Transitive Immutability

It is often useful to determine the immutability at the level
of types, e.g., to quickly determine whether a field of a given
static type can be transitively immutable. In object-oriented
languages, a type is either populated by one class (of the same
name as the type) and all of its (potential) subclasses or by
an interface (of the same name as the type) and all of its
implementing classes. Type immutability is defined through
class immutability and also uses the lattice from Fig. 2.

Definition 11: The immutability of a type is the least upper
bound of the immutability of all classes populating that type.

As a corollary, the type of a final class has the same
immutability as the class. Depending on the analysis scenario,
the set of potential subclasses may not be known completely,
e.g., when analyzing an extensible library; in this case the type
must conservatively be considered to be mutable [15], [20].

IV. CIFI: IMPLEMENTATION OF THE MODEL

CiFi implements the presented model as a set of col-
laborating modular analyses for field assignability and for
field/class/type immutability based on the static analyses frame-
work OPAL [21]. OPAL enables the composition of decoupled
inter-dependent static analyses that collaborate via a blackboard
architecture [18] model for fixed-point computations.

A. Overall Architecture of CiFi

Fig. 3 shows the dependencies between CiFi’s analyses.
Field immutability depends on field assignability and type
immutability. The latter depends on class immutability, which,
in turn, depends on field immutability. The analysis for field
assignability depends on an escape analysis for determining
effective non-assignability of fields. This analysis is not shown
in bold font as we used an escape analysis provided by OPAL.

As indicated by the red arrows in Fig. 3, there is a circular
dependency of analyses. Thanks to OPAL’s blackboard archi-
tecture and fixed-point solver, analyses - including cyclically
dependent ones - execute in an interleaved way, even if
otherwise autonomous. Thus, despite the cycle, our analyses
can profit from the intermediate results of each other. This
simplifies the implementation of CiFi’s analyses and enables to
easily exchange their implementation or add further analyses
for trading off precision, soundness and performance.

B. Field Assignability Analysis
The field-assignability analysis is based on the respective

lattice (cf. Fig. 1) and is a prerequisite for the field-immutability
analysis. We omit a discussion of more trivial aspects and focus
on handling assignments outside of constructors. Simplified
pseudocode for handling lazy initialization is shown in Listing 7.
The analysis checks whether an initialization is only performed
after a default-value check (e.g., null in case of objects) has
succeeded (Line 2). To determine thread safety, the analysis
checks whether the initialization is performed in a synchronized
method or a block synchronized on the object holding the
field (Line 3). Furthermore, the analysis ensures that even if
exceptions are thrown within the lazy initialization method,
either the field is guaranteed to be written before its value is
returned, or its value is not returned at all (Line 4).
1 fun isFieldLazilyInitialized(field):
2 if(initializationNotWithinDefaultValueCheck(field) ||
3 initializationNotSynchronized(field) ||
4 exceptionsLeakUninitializedField(field)) false
5 else true

Listing 7. Lazy Initialization Recognition (Pseudocode)

Additionally, CiFi is able to recognize fields that are assigned
only on freshly created instances before they can be accessed
elsewhere. For this purpose CiFi checks that the instance does
not escape before it is returned. This pattern, illustrated in
Listing 8, is often used to implement the clone method.
1 class C {
2 private int i;
3 public C clone(){
4 C c = new C();
5 c.i = i;
6 return c;
7 } }

Listing 8. Clone Pattern

C. Field Immutability Analysis
The field-immutability analysis combines results from anal-

yses for field assignability and class and type immutability. Its
logic is sketched in Listing 9. It always considers assignable
fields mutable (Line 2). For all other fields, it checks whether
there is only a single unique object assigned to the field
(Line 3). If such object can be identified, the respective class
immutability is queried and used (Line 4), otherwise the
immutability for the field’s static type is checked (Line 5).
1 fun getFieldImmutability(field):
2 if (isFieldAssignable(field)) Mutable
3 else if (canUniqueAssignedObjectBeIdentified(field))
4 getClassImmutability(getAssignedObject(field))
5 else if (getTypeImmutability(field)==TransitivelyImmutable)
6 TransitivelyImmutable
7 else if (hasGenericType(field)) // Dependent Immutablity
8 if (onlyTransitivelyImmutableTypeParams(field))
9 TransitivelyImmutable

10 else if (hasANotTransitivelyImmutableTypeParam(field))
11 NonTransitivelyImmutable
12 else DependentlyImmutable
13 else NonTransitivelyImmutable

Listing 9. Field Immutability Analysis (Pseudocode)



The analysis recognizes dependently immutable fields using
information from the field’s Signature attribute in the Java
Bytecode. If the Signature attribute contains generic type
parameters, the field might be dependently immutable (Line 7).
In this case, it is checked whether all generic type parameters
are instantiated with transitively immutable types (Line 8);
if this is the case, the field is transitively immutable. It is
next checked whether at least one generic type parameter
was instantiated with a type that is non-transitively immutable
or mutable (Line 10). In this case, field is non-transitively
immutable. If neither of the latter two cases applies, the field
is dependently immutable (Line 12).

This handling of fields with generic types is exemplified in
Listing 10. First note that class GC is dependently immutable
for T because of its generically typed field genericField
(Line 2). For field gcDeep in Line 5, the single generic type
parameter is instantiated with the transitively immutable type
java.lang.Integer. Thus, gcDeep is also transitively
immutable. In turn, the generic type parameter of field
gcMutable in Line 6 is instantiated with the (presumably
mutable) type MutableClass. Thus, gcMutable is only
non-transitively immutable. Finally, for field gcT in Line 7,
the generic type parameter is instantiated with another generic
type parameter, T. Thus, gcT is dependently immutable.
1 final class GC<T> {
2 private final T genericField;
3 public GC(T value){ this.genericField = value; } }
4 class C<T> {
5 private final GC<Integer> gcDeep;
6 private final GC<MutableClass> gcMutable;
7 private final GC<T> gcT;
8 [...] }

Listing 10. Dependent Immutability

D. Class and Type Immutability Analysis
The class-immutability analysis of a class C joins the

immutability of C’s parent class and the immutability of the
instance fields declared in C (cf. Definition 10). Simplified pseu-
docode of its logic is shown in Listing 11. Note that interfaces
implemented by C do not have to be considered as they cannot
contain instance fields. As analyzing java.lang.String’s
immutability is far from trivial, CiFi is configured to treat it as
transitively immutable. This is in line with other immutability
analyses (e.g., [15]) that are configured similarly. Also, we do
not consider specialization of generic type parameters.
1 fun getClassImmutability(class):
2 classImm = getClassImmutability(getSuperClass(class))
3 for field in class.instanceFields
4 fieldImm = getFieldImmutability(field)
5 if (fieldImm > classImm) classImm = fieldImm
6 classImm

Listing 11. Class Immutability Analysis (Pseudocode)

The type-immutability analysis’ logic is sketched in List-
ing 12. It follows the definition of type immutability in
Definition 11, joining the individual classes’ immutability
properties while taking into consideration whether the analysis
is performed in a closed- or open-world scenario (Line 2).

1 fun getTypeImmutability(class):
2 if (isExtensible(class)) return Mutable
3 typeImm = getClassImmutability(class)
4 for subclass in class.allSubclasses
5 classImm = getClassImmutability(subclass)
6 if (classImm > typeImm) typeImm = classImm
7 typeImm

Listing 12. Type Immutability Analysis (Pseudocode)

While other tools usually support only one (cf. [13]), CiFi lets
users configure either open- or closed-world assumption. Under
open-world assumption, it assumes classes can be added to all
packages except for subpackages of java3 and all non-final
classes can be extended. Under closed-world assumption, it
assumes no classes can be added to existing packages and
existing classes cannot be extended. However, public fields
and methods are assumed to be accessible.

E. Threats To Soundness

Our analyses do not consider any field access by means of
reflection, sun.misc.Unsafe or native methods calls. Such
accesses, potentially anywhere in the program, cannot reliably
be linked to specific fields. Ignoring them is in line with other
state-of-the-art static analyses. Livshits et al. [22], e.g., omit
features like reflective calls to be more precise. Porat et al. [15]
also do not consider native code and “dynamic effects resulting
from reflection” in their class- and field-immutability analyses.

V. EVALUATION

The evaluation targets the following research questions:
RQ1 How expressive is our model relative to the classification

of immutability facets defined by Coblenz et al. [13]?
RQ2 How precisely and soundly does CiFi fulfill our model?
RQ3 How does CiFi compare to the state of the art with respect

to the previous question?4

RQ4 Does our model reflect immutability facets in the real
world?

The rationale for these questions is as follows. Once we
demonstrate the model’s conceptual quality (RQ1) and check
that CiFi precisely and soundly implements it (RQ2, RQ3),
we use CiFi to assess the model’s practical quality (RQ4).

A. Expressiveness of the Model

For RQ1, we use the system that Coblenz et al. [13] proposed
for classifying mutability restrictions along several dimensions.

a) Type of Restriction: Our model considers the im-
mutability of fields, classes and types, not just read-only
restrictions on individual references. This provides stronger
guarantees for developers [13]. We also consider assignability
for fields. We do not consider ownership of objects, which we
discuss in Section VII together with read-only restrictions.

b) Scope: Our model focuses on class immutability, which
Coblenz et al. [13] point out to be frequently needed.

3The classloader usually prohibits adding new classes to these packages.
4We consider Glacier [14] (cf. Section II) as the state-of-the-art approach

in enforcing class and field immutability.



c) Transitivity: We consider both transitive and non-
transitive immutability. This enables a finer-grained view on
immutability compared to systems surveyed by Coblenz et al.

d) Initialization: We do not support explicit relaxing of
restrictions during initialization. But, our definition of lazy
initialization also encompasses delayed initialization, if fields
are assigned only once. This also enables cyclic data structures.

e) Abstract vs. Concrete State: We consider the set of all
instance fields of an object, i.e., its concrete state. Immutability
can also be defined on abstract state [9], [11]5, encoded by
annotations. Assuming such annotations are available, our
model can be applied to abstract state, too.

f) Backward Compatibility: Our approach performs static
analysis to infer immutability; it does not require developers to
use specific language features or annotations. Thus, it is sound
regardless of potentially unknown code interfacing with the
analyzed software when used with an open-world assumption.
If the analyzed program cannot be extended, a closed-world
assumption can be used to uncover more immutability.

g) Enforcement: We infer immutability instead of enforc-
ing it, but do provide static guarantees on immutability. Static
enforcement may burden developers if they have to annotate
all relevant program constructs [13]. This concern does not
apply to our automated inference.

h) Polymorphism: Handling mutable and immutable
parameters of functions is not applicable to our approach that
infers actual immutability instead of enforcing restrictions.

� Our model is more expressive than approaches surveyed by
Coblenz et al. [14] without completely covering the described
design space. To balance expressiveness with usability [14],
we focus on fields and classes/types, which simplify usabil-
ity [13], [14]. Yet, the model can be easily extended, e.g.,
with object/reference immutability. Such extensions are well-
supported by CiFi’s inference approach (no annotations) and
its modular architecture, enabling to plug-n-play analyses
depending on what results are considered relevant.

B. Precision and Recall

A ground truth is needed to validate precision and recall
of CiFi and other analyses w.r.t. our model. To the best of
our knowledge, no benchmark for class and field immutability
exists that could be annotated with our model’s properties.
Thus, we handcrafted CiFi-Bench.

1) CiFi-Bench: includes tests for all immutability levels
defined in our model organized into twelve categories.6

• Assignability: different (effectively) (non-)assignable fields.
• General: simple cases, e.g., static fields, interfaces, trivially

transitively immutable and mutable classes.
• Known Types

– Single: cases where a single concrete object is assigned
to a field, yielding stronger immutability guarantees than
possible to infer from the field’s static type.

5Excluding some non-essential state, e.g., fields used for caching.
6CiFi-Bench is available under an open-source license: Link omitted for

double-blind review

– Multiple: cases where different objects can be assigned
to a field and stronger immutability guarantees can be
inferred then possible from the field’s static type, including
cases where concrete objects or only their types are known.

• Generic
– Simple: cases of immutability in combination with generic

types, i.e., dependent immutability.
– Extended: advanced usages of generics such as multiple

nested generic types and generic types with bounds.
• Arrays

– Non-Transitive: cases with mutable arrays resulting in
non-transitively immutable fields.

– Transitive: cases with arrays that cannot be or are not
mutated resulting in transitively immutable fields.

• Lazy Initialization
– Arrays encompasses cases of lazy initialization of fields

with an array type.
– Objects encompasses both thread-safe and unsafe cases

of lazily initialized fields with object types.
– Primitive Types: lazy initialization without synchroniza-

tion which can be thread-safe for primitive types.
– Scala Lazy val encompasses an example modeled after

Scala 2.12’s implementation of lazy val [23].
• String encompasses two tests modeled after the hashCode

method and shared char array of java.lang.String.
We annotated fields, classes, and types with the respective
assignability and immutability properties as expected with an
open-world assumption.

2) CiFi Results: For each test case tc, CiFi either produces
the precise value annotated in tc (in five categories), or a sound
over-approximation, i.e., a value further up in the respective
lattice, which is less precise than possible but can be soundly
used by further analyses/optimizations. CiFi did not produce
any unsound results, i.e., values further down in the lattice. In
some more detail, the results are as follows:

• CiFi inferred immutability properties precisely for the cate-
gories: Assignability, General, Known Types, Generic/Sim-
ple, Arrays/Non-Transitive, Lazy Initialization/Arrays, and
Lazy Initialization/Objects.

• In the category Generic/Extended CiFi soundly over-
approximates some complex test cases such as doubly
nested generic classes (Gen<Gen<T>>), generic cases
with bounds, and more complex lazy initialization patterns
than the one we described in Section IV-B. For doubly
nested generics, the approximation is not mutable, but non-
transitively immutable, retaining some precision. Generic
classes with bounds are soundly over-approximated as de-
pendently immutable. Complex cases of lazy initialization
not recognized by CiFi are over-approximated as mutable.

• CiFi soundly over-approximates all tests in Arrays/-
Transitive to non-transitively immutable, and in Lazy
Initialization/Primitive Types to unsafely lazily initialized
or assignable. All test cases in Lazy Initialization/Scala
Lazy Val and String are soundly over-approximated to



assignable except the field referring to the final char
array in the category String which is soundly over-
approximated to non-transitively immutable.

� CiFi matches the annotated properties of the benchmark
either precisely or soundly over-approximates them. The
observed over-approximations are due to lacking support
for the affected features. Leaving complex features out of
scope when the expected benefit is small is in line with other
immutability analyses [15].

C. Comparison with Glacier

To answer RQ3, we run Glacier [14], the state-of-the-art
tool for enforcing class and field immutability, on CiFi-Bench.
As Glacier only considers transitive immutability, we can
only evaluate it w.r.t. this level of immutability. Hence, we
annotated all classes and fields of CiFi-Bench with Glacier’s
@Immutable annotation. We consider Glacier to pass a test if
either of the following holds: (a) it does not output an error for
transitively immutable fields and classes, (b) it outputs such an
error for fields and classes that are not transitively immutable
(since Glacier, does not handle non-transitive or dependent
immutability, respective fields have to be considered mutable).
The results for each category are as follows.

• For category Known Types/Multiple, Glacier can enforce
transitive immutability. For two tests in General
resp. Known Types/Single, Glacier produces unsound
results. First, Glacier treats both @Immutable
and @MaybeMutable classes as subtypes of
java.lang.Object. Thus, a mutable object
can be assigned to an @Immutable field of type
Object. Second, while Glacier prohibits assignments
to fields outside of the constructor, it does not check
whether a field being assigned in a constructor belongs to
the object being constructed. Thus, @Immutable fields
can be mutated while constructing other objects. Both
cases are shown in Listing 13.

1 @Immutable class C {
2 @Immutable private Object o;
3 public C(C parent, Object o){ parent.o = o; } }

Listing 13. Glacier Unsoundness Example

• Glacier was unsound in three Assignability tests. Two
are again due to @MaybeMutable being a subtype of
Object, but the third one revealed another issue: Glacier
ignores compound-assignment operators like +=. Thus,
primitive or String fields can be mutated outside of
constructors. In CiFi, such omissions are less likely to
occur accidentally as it analyzes bytecode.

• Glacier passed all test cases in Generic as it enforces that
only @Immutable types are used for type parameters
of @Immutable classes and only @Immutable classes
can extend @Immutable classes. But this means that
Glacier cannot handle dependent immutability, which
results in lost opportunities for being more precise.

• In category Arrays, non-transitively immutable fields are
handled correctly. Some transitively immutable fields

are also enforced correctly, but require four anno-
tations: @Immutable int @Immutable[] arr =
new @Immutable int @Immutable[5]; Glacier
cannot enforce transitive immutability where array ele-
ments are not mutated, despite not being @Immutable.

• In category Lazy Initialization, Glacier cannot enforce tran-
sitive immutability due to its rule that in @Immutable
classes, fields may only be assigned in constructors.

• In the category String, Glacier handles the case concerning
the char array shared between identical strings precisely,
but it cannot enforce immutability for the lazily initialized
field caching the hashCode method’s result.

� Glacier can only recognize transitive immutability com-
pared to CiFi’s fine-grained immutability results.
� Glacier shows three cases of unsoundness.
� While Glacier strictly enforces transitive immutability for
generics, including nested and bounded generic types, it lacks
the flexibility of dependent immutability to allow generic
classes to be treated differently depending on whether they
are instantiated with transitively immutable types or not.
Additionally, Glacier does not handle lazy initialization.
� To recap, CiFi is more sound and often more precise than
Glacier without requiring manual effort for annotations. As
a result, CiFi can be applied easily to existing codebases
and third-party code, even if source code is not available.

D. Immutability Prevalence

To answer RQ4, we analyzed the following libraries. Open-
JDK 1.8.0 292, Google Guava 30.1.1, Eclipse Collections
10.4, Apache Commons Collections 4.4.4., and Scala 2.12.10.
We performed the evaluation on a server with two AMD(R)
EPYC(R) 7542 @ 2.90 GHz (32 cores / 64 threads each) CPUs
and 512 GB RAM. For runtimes, we report the median of
15 executions. CiFi was run using OpenJDK 1.8.0 275, Scala
2.12.13, and the Scala build tool sbt 1.4.6 with 32 GB of heap
memory. Thereby, we applied an open-world assumption.

Results for field assignability are shown in Table I. The
columns give the number of fields found to have the respective
levels of assignability, followed by the total number of analyzed
fields. Results for the field-, class-, and type-immutability
analyses are given in Table II, listing the number of entities with
respective levels of immutability, total count and execution time
for all analyses combined. Total runtime including preparatory
steps, e.g., loading the libraries’ files is given in parentheses.

The results provide empirical evidence that most of the
immutability properties defined in Section III are prevalent in
real-world libraries. Even if absolute numbers for dependent
immutability appear to be lower, one has to consider that
generic classes are often widely used collections and thus
can have a significant impact. We found several hundreds
of (unsafely) lazily initialized fields in the JDK and some
in Guava and Apache Commons Collections, but none in
Eclipse Collections. We studied the latter library’s source code
and indeed Eclipse Collections seems not to use any lazy
initialization at all. CiFi does not (yet) handle Scala’s lazy



TABLE I
LIBRARY RESULTS ASSIGNABILITY (OPEN WORLD)

Library assignable unsafely l.i. l.i. (eff.) n.a.
∑

OpenJDK 26 684 351 189 66 730 93 954
Eclipse 2 380 0 0 11 508 13 888
Guava 656 12 0 3 219 3 887
Apache 275 18 0 656 949
Scala 1 249 0 0 5 377 6 626

l.i. = lazily initialized, (eff.) n.a. = (effectively) non-assignable

TABLE II
LIBRARY RESULTS IMMUTABILITY (OPEN WORLD)

Library Analysis mutable non-tra. dep. tra.
∑

time (s)

Field 27 035 23 004 78 43 837 93 954
5.47OpenJDK Class 12 398 4 259 27 5 393 22 077

(6.17)Type 20 155 1 475 6 3 203 24 839

Field 2 380 7 620 142 3 746 13 888
1.56Eclipse Class 883 4 410 61 2 247 7 601

(2.72)Type 6 186 364 41 1 057 7 648

Field 668 1 995 35 1 189 3 887
1.06Guava Class 636 785 17 721 2 159

(1.79)Type 1 697 195 9 391 2 292

Fields 293 360 18 278 949
0.81Apache Class 262 147 7 69 485

(1.66)Type 424 49 1 50 524

Field 1 249 3 433 344 1 600 6 626
1.57Scala Class 490 2 109 74 1 150 3 823

(5.50)Type 3 331 661 60 430 4 482
dep. = dependently immutable, tra. = transitively immutable

val, but lazy initialization is a prominent feature of the Scala
language, too. We can also see that all libraries have significant
quantities of (effectively) non-assignable fields; OpenJDK has
about 46% of transitively immutable fields, while the other
libraries have mostly non-transitively immutable fields. All
libraries also have significant shares of (non-)transitively and
dependently immutable classes, ranging from 43% to 88%.

To recap, the results presented so far signify the relevance
of our immutability model in practice. The properties of the
model prevail despite the fact that CiFi over-approximates the
model in several cases (cf. RQ2) and that it was executed with
a conservative open-world assumption. To investigate the effect
of the latter, we re-executed CiFi on the same libraries with
the same setup but with a closed-world assumption. Results
for field assignability are given in Table III and for the other
analyses in Table IV. By comparing to the open-world scenario
(cf. Tables I), we make the following observations:

First, the number of types with stronger immutability
guarantees increases significantly. This is to be expected, as no
subclasses can be added in the closed-world scenario. Second,
the impact on the number of fields and classes found to exhibit
different levels of assignability and immutability is minimal.
Differences are most significant for OpenJDK, where 14.2% of
formerly assignable and 13.7% of formerly mutable fields and
6.7% of formerly mutable classes exhibit stronger guarantees
for assignability or immutability, respectively. It seems that

TABLE III
LIBRARY RESULTS ASSIGNABILITY (CLOSED WORLD)

Library assignable unsafely l.i. l.i. (eff.) n.a.
∑

OpenJDK 22 885 435 198 70 436 93 954
Eclipse 2 380 0 0 11 508 13 888
Guava 598 30 0 3 259 3 887
Apache 269 21 0 659 949
Scala 1 249 0 0 5 377 6 626

l.i. = lazily initialized, (eff.) n.a. = (effectively) non-assignable

TABLE IV
LIBRARY RESULTS IMMUTABILITY (CLOSED WORLD)

Library Analysis mutable non-tra. dep. tra.
∑

time (s)

Field 23 320 24 269 80 46 285 93 954
7.61OpenJDK Class 11 573 4 741 31 5 732 22 077

(8.58)Type 13 378 5 225 35 6 201 24 839

Field 2 380 7 595 142 3 771 13 888
1.92Eclipse Class 883 4 397 61 2 260 7 601

(3.27)Type 950 4 552 60 2 086 7 648

Field 628 1 931 36 1 292 3 887
1.58Guava Class 633 773 18 735 2 159

(2.35)Type 715 848 20 709 2 292

Fields 290 353 18 288 949
1.17Apache Class 262 142 9 72 485

(1.98)Type 294 146 9 75 524

Field 1 249 3 314 359 1 704 6 626
2.48Scala Class 490 2 064 96 1 173 3 823

(6.53)Type 770 2 196 134 1 382 4 482
dep. = dependently immutable, tra. = transitively immutable

the increased number of types with stronger immutability
guarantees does not proportionally influence field immutability.
This needs further investigation, but one explanation could
be that many fields have primitive types (or String). Third,
the execution runtime increased by 23% up to 58%. This
is because in an open-world scenario, we avoid performing
expensive computations, e.g., of extensible types or of protected
non-final fields in extensible classes, which are just mutable.

� All immutability levels and flavors of our model are
prevalent in real-world libraries. This means that (a) the
definitions in our model reflect immutability in practice and
(b) the versatile inference of CiFi is needed to consider fine-
grained levels and diverse flavors of immutability.
� Except for type immutability, applying an open-world
assumption does not seem to significantly reduce precision,
while consuming significantly less computation time. Thus, it
may be beneficial to use an open-world assumption even if
all program code is available. CiFi gives users the flexibility
to choose between an open- and a closed-world assumption.

VI. THREATS TO VALIDITY

An internal validity threat arises if CiFi-Bench does not
cover relevant aspects of class and/or field immutability, or
if its tests are annotated incorrectly. To mitigate this threat,
tests were created by one author based on the literature survey



and checked by a second author. All authors have years of
experience in static analysis and immutability research.

An external threat to validity arises if the libraries used for
evaluation are not representative of real-world immutability.
However, we chose well-known libraries of significant size that
include a significant number of data structures many of which
are documented to be immutable. The Scala standard library
also provides an insight into immutability for Java bytecode
not compiled from Java source code.

VII. RELATED WORK

In this section, we discuss approaches to object and reference
immutability. They are related, but not the main focus of this
work. We surveyed approaches that, like our work, address
class and field immutability in Section II.

Haack et al. [4] distinguish observational and state-based
immutability. Observational immutability describes that an
observer is not able to see any difference in an object at
any two points in time after its initialization. State-based
immutability describes that the internal state of an object
does not change at all. Like in our model, for state-based
immutability, the distinction is made between transitive and
non-transitive immutability. Haack et al. express their belief
that observational immutability is more intuitive while state-
based immutability is better-suited for static analysis. This is
in line with our approach which also considers state-based
immutability.

Potanin et al. [1] distinguish between abstractly immutable
objects that may change their internal representation while
preserving their semantics as visible by their clients and
representationally immutable objects that never change their
internal representation. This corresponds to observational and
state-based immutability as used by Haack et al.

Zibin et al. [11] enforce transitive immutability of fields that
belong to an object’s abstract state with their language extension
Immutability Generic Java (IGJ) that uses Java generics to
describe the immutabiltiy of a class through an additional type
parameter (Mutable, Immutable, or ReadOnly).

Ownership Immutability Generic Java (OIGJ) [24] by Zibin
et al. uses ownership to enforce object immutability. As only an
object’s owner can mutate it, it is easy to check for mutations
if the owner is known. Leino et al. [25] also use ownership to
freeze any object at any time during program execution. When
an object is frozen, its owner is changed to be the freezer
object. As that object is not exposed to the rest of the program,
and as changing fields requires ownership, the frozen object
becomes immutable and cannot be unfrozen again. This applies
to objects owned transitively by the frozen object as well.

For references, the readonly property has been studied
extensively [8]–[12], [26]–[28]. Tschantz and Ernst use it in
the Javari type system [9]. Through a readonly reference,
the referenced object and all transitively referenced objects
belonging to the abstract state of the referenced object cannot
be mutated, while they may still be mutated through other
references. Thus, readonly is different from the transitive
immutability property – the latter requires the referenced

object, including all transitively referenced objects, to be
immutable through any reference. Additionally, a romaybe
modifier expresses polymorphic immutability of references,
i.e., whether the reference returned by a method is mutable or
not depends on the context in which the method is accessed and
whether the object referred to by this reference, also transitively,
is mutated or not. That is, a method may return a potentially
mutable but not yet escaped object as romaybe, allowing the
caller to treat it as immutable or mutate it. To support lazy
initialization, it is possible to exclude lazy initialized fields from
the abstract state in Javari (cf. [8]). Gordon et al. [2] describe a
similar concept to readonly, but use the term readable instead.

Huang et al. use Javari as a basis for their type system
ReIm and their immutability and purity analysis ReImInfer [8].
However, they use polyread instead of romaybe. Additionally,
while Javari’s readonly modifier refers to the abstract state,
here readonly applies to the concrete state of the referenced
object, i.e., it includes all fields and referenced objects.

Milanova and Dong [29] build upon ReIm to infer and check
object immutability by combining a reference immutability
analysis with escape analysis. They consider transitive im-
mutability, enforcing that no transitively referenced values,
objects, or arrays of an immutable object are mutated. They
also address delayed object initialization with their endorse
modifier for statements. This results in the analysis ignoring the
statement’s effects on immutability, which is, e.g., necessary to
support circular initialization. With the unstrict block Gordon
et al. [2] present a similar approach.

Quinonez et al. [10] find it “tedious and error-prone” to
manually add modifiers like readonly to existing code bases.
They propose to infer them automatically with Javarifier, which
can also infer Javari’s modifiers for arrays and their values as
well as for the type parameters of generic classes.

Boyland [30] cautioned against adding readonly to the Java
language because its transitive rule would be too restrictive
while it cannot prevent harmful observational exposure, i.e., the
state of a mutable field can be seen via a readonly reference
while it can be modified through another reference. This leads
to problems, e.g., in multi-threading contexts or when a client
expects a non-mutable object. Our model is in line with Boyland
and considers the immutability of an entire class rather than the
immutability through a given reference. This avoids harmful
observational exposure because a transitively immutable class
has only transitively immutable instances.

VIII. CONCLUSION

We proposed a comprehensive, fine-grained lattice model
for field assignability and for field, class and type immutability.
Based on a literature survey, the model unifies the terminology
of the research area, which has so far been used inconsistently.
Unlike the state of the art, the model distinguishes between
these different flavors of immutability and provides levels
of immutability to represent relevant aspects such as lazily
initialized fields and dependent immutability for generic classes.
As we have shown, our model covers a wider range of
immutability than previous models. Accompanying this model,



we provide CiFi-Bench, a handcrafted set of test cases to serve
as a ground truth for class- and field-immutability analyses.
We introduced CiFi, a set of modular analyses for each of the
lattices of our model. We used CiFi-Bench to showcase CiFi’s
precision and recall, then used CiFi to study the prevalence of
immutability in real-world libraries.

In future work, we plan to investigate possibilities to
increase CiFi’s precision further without degrading its runtime
performance disproportionately. This may include the ability to
precisely find more lazy initialization patterns and additional
support for generic type parameters, e.g., regarding their
instantiation or their statically provided bounds. It is also
possible to extend CiFi with further modular analyses, e.g., for
object or reference immutability.
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