
Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman, Zachary Tatlock

Szalinski: A Tool for Synthesizing
Structured CAD Models with Equality

Saturation and Inverse Transformations

PLDI 2020

Designing Physical Objects
is

Programming!

Share with others

Make your own models

CAD and 3D Printing everywhere!

Share with others

Make your own models

CAD and 3D Printing everywhere!

Editability is key!

Mesh Decompilers Recover Flat Programs

Mesh
Decompilers *

* Reincarnate [ICFP 2018],
 InverseCSG [SIGGRAPH Asia 2018],
 Shape2Prog [ICLR 2019], CSGNet [CVPR 2018], …

> 1500 LOC

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Primitives

Mesh Decompilers Recover Flat Programs

Mesh
Decompilers *

* Reincarnate [ICFP 2018],
 InverseCSG [SIGGRAPH Asia 2018],
 Shape2Prog [ICLR 2019], CSGNet [CVPR 2018], …

> 1500 LOC

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Mesh Decompilers Recover Flat Programs

Mesh
Decompilers *

* Reincarnate [ICFP 2018],
 InverseCSG [SIGGRAPH Asia 2018],
 Shape2Prog [ICLR 2019], CSGNet [CVPR 2018], …

> 1500 LOC

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Primitives
Affine operators

Mesh Decompilers Recover Flat Programs

Mesh
Decompilers *

* Reincarnate [ICFP 2018],
 InverseCSG [SIGGRAPH Asia 2018],
 Shape2Prog [ICLR 2019], CSGNet [CVPR 2018], …

> 1500 LOC

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Binary operators

Primitives
Affine operators

Mesh Decompilers Recover Flat Programs

Mesh
Decompilers *

* Reincarnate [ICFP 2018],
 InverseCSG [SIGGRAPH Asia 2018],
 Shape2Prog [ICLR 2019], CSGNet [CVPR 2018], …

> 1500 LOC

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Repetition of spokes is not
captured by flat program

Szalinski: flat CAD parametrized CAD

Szalinski

This talk

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Szalinski: flat CAD parametrized CAD

Szalinski

This talk

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Szalinski: flat CAD parametrized CAD

Szalinski

This talk

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

Fold and
Tabulate
represent

loops

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

A language, called Caddy that
supports CAD features &

functional programming features
like Fold, Tabulate, Map

Szalinski: flat CAD parametrized CAD

Szalinski

This talk

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 3)
 (Rotate [0, 0, 120i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 45i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 8)
 (Rotate [0, 0, 45i]
 (Translate [1,−0.5,0]
 (Cuboid [15, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [15, 1, 1]))))))

Fold and
Tabulate
represent

loops

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

edits

edits

Szalinski

This talk

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 3)
 (Rotate [0, 0, 120i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 45i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 8)
 (Rotate [0, 0, 45i]
 (Translate [1,−0.5,0]
 (Cuboid [15, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [15, 1, 1]))))))

Fold and
Tabulate
represent

loops

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

edits

edits

Automatically infer loops from straight line
programs in the form of Folds, Maps, and

Tabulates

Hypothesis: Parametrized programs are easier to
read/customize than flat programs

Szalinski: flat CAD parametrized CAD

(Union
 (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Ideal Input to Szalinski

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Term Rewriting

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

Term Rewriting
Fold Union Rewrite

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Term Rewriting
Structure FinderFold Union Rewrite

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

Term Rewriting
Structure Finder

Structure Finder

Fold Union Rewrite

*

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (Tabulate (i 6) (0, 0, 60i))
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

Term Rewriting
Structure Finder

Structure FinderCustom Solver

Fold Union Rewrite

*

*

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (Tabulate (i 6) (0, 0, 60i))
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

Term Rewriting
Structure Finder

Structure FinderCustom Solver

Fold Union Rewrite

*

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

Lift Tabulate Rewrite

**

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (Tabulate (i 6) (0, 0, 60i))
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

Term Rewriting
Structure Finder

Structure FinderCustom Solver

Fold Union Rewrite

*

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

Lift Tabulate Rewrite

**

Structure Finder
List
 (Op [param 1] (arg 1))
 (Op [param 2] (arg 2))
 (Op [param 3] (arg 3)) …

Map2 Op
 (List [param 1] [param 2] [param 3])
 (List (arg 1) (arg 2) (arg 3))

Structure Finder
List
 (Op [param 1] (arg 1))
 (Op [param 2] (arg 2))
 (Op [param 3] (arg 3)) …

Map2 Op
 (List [param 1] [param 2] [param 3])
 (List (arg 1) (arg 2) (arg 3))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] [0, 0, 120] [0, 0, 180] [0, 0, 240] [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Fold Union Rewrite

List 1

} List 2

Structure Finder
List
 (Op [param 1] (arg 1))
 (Op [param 2] (arg 2))
 (Op [param 3] (arg 3)) …

Map2 Op
 (List [param 1] [param 2] [param 3])
 (List (arg 1) (arg 2) (arg 3))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] [0, 0, 120] [0, 0, 180] [0, 0, 240] [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Fold Union Rewrite

Map2 applies the operator to the ith element of
the first list and ith element of the second list

List 1

} List 2

Structure Finder
List
 (Op [param 1] (arg 1))
 (Op [param 2] (arg 2))
 (Op [param 3] (arg 3)) …

Map2 Op
 (List [param 1] [param 2] [param 3])
 (List (arg 1) (arg 2) (arg 3))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] [0, 0, 120] [0, 0, 180] [0, 0, 240] [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Fold Union Rewrite

Map2 applies the operator to the ith element of
the first list and ith element of the second list

List 1

} List 2

Also applies to this list

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (Tabulate (i 6) (0, 0, 60i))
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

Custom Solvers
Structure Finder

Custom solver

The concrete list of vectors is passed to a
custom solver that finds a closed form

arithmetic expression

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (Tabulate (i 6) (0, 0, 60i))
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

Term Rewriting
Structure Finder

Structure FinderCustom Solver

Fold Union Rewrite

*

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

Lift Tabulate Rewrite

**

(Union (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union (Cylinder [1, 5, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))

…

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (Tabulate (i 6) (0, 0, 60i))
 (Map2 Translate
 (Repeat 6 [1, −0.5, 0]
 (Repeat 6 (Cuboid [10, 1, 1]))))))

Structure Finder

Structure FinderCustom Solver

Fold Union Rewrite

*

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]
 (Cuboid [10, 1, 1]))))))

Lift Tabulate Rewrite

**

Inputs to Szalinski are rarely ideal!

Term Rewriting

(Union
 (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Ideal Input vs Actual Input
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union
 (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Ideal Input vs Actual Input
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(Union
 (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Ideal Input vs Actual Input
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Previous rewriting strategy no longer works!

(Union
 (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Ideal Input vs Actual Input
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Must interleave rewriting strategy with CAD
identities to line up subexpressions

(Union
 (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Ideal Input vs Actual Input
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Must interleave rewriting strategy with CAD
identities to line up subexpressions

Phase ordering problem: order of rewriting matters!

(Union
 (Cylinder [1, 5])
 (Union
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Ideal Input vs Actual Input
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Union
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cuboid [10,1,1])))
 (Scale [10,1,1]
 (Translate [0.1,−0.5,1] (Cuboid [1,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Translate [−1,0.5,0]
 (Scale [−1,−1,1] Cuboid [10,1,1]))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

E-graphs* can solve phase ordering

* Equality Saturation: A New Approach to Optimization. Tate, Stepp, Tatlock, Lerner. POPL’09

Must interleave rewriting strategy with CAD
identities to line up subexpressions

Phase ordering problem: order of rewriting matters!

Semantically Equivalent, Syntactically Different
(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Translate [1, −0.5, 0] (Cube [10, 1, 1]))
 (Rotate [0,0,60]
 (Translate [1,−0.5,0] (Cube[10,1,1])))
 (Rotate [0,0,120]
 (Translate [1,−0.5,0] (Cube[10,1,1])))
 (Scale [−1,−1,1]
 (Translate [1,−0.5,0] (Cube[10,1,1])))
 (Rotate [0,0,240]
 (Translate [1,−0.5,0] (Cube[10,1,1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cube [10, 1, 1]))))))

Rotate [0, 0, 180] is replaced by
equivalent Scale [-1, -1, 1]

Rotate [0, 0, 180]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

=

Syntactic rewrite

Rotate (0, 0, 180, c)) ↭ Scale (−1, − 1, 1, c))

Scale [-1, -1, 1]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

Semantically Equivalent, Syntactically Different

Rotate [0, 0, 180]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

=

Syntactic rewrite

Scale [-1, -1, 1]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

Store Expressions in an E-graph

Rotate (0, 0, 180, c)) ↭ Scale (−1, − 1, 1, c))

Cube

[0, 0, 180]

[1, -0.5, 0]

Rotate

Translate

Rotate [0, 0, 180]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

=

Syntactic rewrite

Scale [-1, -1, 1]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

Store Expressions in an E-graph

Rotate (0, 0, 180, c)) ↭ Scale (−1, − 1, 1, c))

EClass

Edges from Enodes to Eclasses

Cube

[0, 0, 180]

[1, -0.5, 0]

ENode
Rotate

Translate

Syntactic rewrite

Rotate [0, 0, 180]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

= Scale [-1, -1, 1]
 (Translate [1,−0.5,0] (Cube[10,1,1]))

Cube

Store Expressions in an E-graph

Scale

Rotate (0, 0, 180, c)) ↭ Scale (−1, − 1, 1, c))

EClass

Edges from Enodes to Eclasses

Cube

[0, 0, 180]

[1, -0.5, 0]

ENode

[0, 0, 180]

[1, -0.5, 0][-1, -1, 1]

Rotate
Rotate

Translate
Translate

Union

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Fold

Custom Solvers in E-graph
Outer List

Outer list

Outer List

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Custom Solvers in E-graphOuter list

Union

Fold

Map2

Outer List

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Custom Solvers in E-graphOuter list

Union

Fold

Rotate

Map2

Outer List

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Custom Solvers in E-graphOuter list

Union

Fold

Rotate

List

Map2

[0, 0, 60][0, 0, 0] [0, 0, 240][0, 0, 120] [0, 0, 180] [0, 0, 300]

Outer List

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Custom Solvers in E-graphOuter list

Union

Fold

Rotate …

List

Map2

[0, 0, 60][0, 0, 0] [0, 0, 240][0, 0, 120] [0, 0, 180] [0, 0, 300]

CAD arguments

Union

Rotate

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

…

Fold

List

Custom Solvers in E-graph
Outer List

Outer list

Map2

[0, 0, 60][0, 0, 0] [0, 0, 240][0, 0, 120] [0, 0, 180] [0, 0, 300]

[0, 0, 60 * i]

Union

Rotate

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

…

Fold

ListTabulate

Custom Solvers in E-graph
Outer List

Outer list

Map2

[0, 0, 60][0, 0, 0] [0, 0, 240][0, 0, 120] [0, 0, 180] [0, 0, 300]

[0, 0, 60 * i]

Union

Rotate

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

…

Fold

List

Custom Solvers in E-graph
Outer List

Outer list

Map2

[0, 0, 60][0, 0, 0] [0, 0, 240][0, 0, 120] [0, 0, 180] [0, 0, 300]

[0, 0, 60 * i]

…

Tabulate

Bounds i to 6

Union

Rotate

(Union (Cylinder [1, 5, 5])
 (Fold Union
 (Map2 Rotate
 (List [0, 0, 0] [0, 0, 60] … [0, 0, 300])
 (List
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])) …

Structure
Finder

(Union
 (Cylinder [1, 5])
 (Fold Union (List
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

…

Fold

List

Custom Solvers in E-graph
Outer List

Outer list

Map2

[0, 0, 60][0, 0, 0] [0, 0, 240][0, 0, 120] [0, 0, 180] [0, 0, 300]

[0, 0, 60 * i]

…

Tabulate

Custom Solvers for Non-Ideal Inputs
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Expressions are arbitrarily ordered

Parameters of Rotate are not sorted

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Custom Solvers for Non-Ideal Inputs

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Custom Solvers for Non-Ideal Inputs

Parameters of
Rotate are
NOT sorted

Parameters of
Rotate are
NOT sorted

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

List of vectors must be sorted for the solver
to be able to find the closed form and unify

the Tabulate with the concrete list

Custom Solvers for Non-Ideal Inputs

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Custom Solvers for Non-Ideal Inputs

Parameters of
Rotate are
NOT sorted

Naive Solution for Finding Closed Form
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Add all permutations
of the list elements in

the E-graph

Naive Solution Causes the AC-Matching Problem

Add all permutations
of the list elements in

the E-graph

Exponentially many choices in
an E-graph due to associative-
commutative operations like
permuting lists, called AC-

matching in the SMT community

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Inverse Transformations

Key insight: allows solvers
to speculatively transform

their inputs to enable more
profitable rewriting

Inverse Transformations
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

Inverse Transformations
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Structure
Finder

Inverse Transformations
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Structure
Finder

Union

Rotate …

Map2

List

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

Fold

Inverse Transformations
(Union
 (Scale [5,5,1] (Cylinder [1,1]))
 (Fold Union (List
 (Rotate [0, 0, 120]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 0]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 300]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 180]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 240]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
 (Rotate [0, 0, 60]
 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Structure
Finder

Union

Rotate …

Map2

List

Outer List

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Solver permutes
the list to find
closed form!

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Solver permutes
the list to find
closed form!

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Solver permutes
the list to find
closed form!

Solver annotates
the expression

with the profitable
permutation

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Solver permutes
the list to find
closed form!

Solver annotates
the expression

with the profitable
permutation

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))Goal

If a solver cannot simplify

A, but it can simplify (A)

to B, then -1(B) can be

unified with A

f
f

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Solver permutes
the list to find
closed form!

Flexibly combines solvers with an egraph-driven rewrite system

Solvers allowed to transform their input however they want

BUT they must 'undo' the transformation to restore equivalence

Solver annotates
the expression

with the profitable
permutation

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Solver permutes
the list to find
closed form!

Solver annotates
the expression

with the profitable
permutation

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))Goal

If a solver cannot simplify

A, but it can simplify (A)

to B, then -1(B) can be

unified with A

f
f

Inverse Transformations
(Fold Union
 (Map2 Rotate
 (List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Solver permutes
the list to find
closed form!

Solver annotates
the expression

with the profitable
permutation

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))Goal

If a solver cannot simplify

A, but it can simplify (A)

to B, then -1(B) can be

unified with A

f
f

This unification is sound!

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Goal

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Syntactic
rewrites

Propagate and
Eliminate

Goal

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

Goal

Inverse Transformations
(Fold Union

 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List

Unsort

Unsort added to the
e-class of Map2 and

the Outer List

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List Sort

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Unsort

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List Sort

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Unsort

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List Sort

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Unsort

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List Sort

Unsort

Sorts Outer List
 which is equivalent

to Map2

Outer List

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Syntactic
rewrites

Propagate and
Eliminate

Effectively a no-op,
but allows sorting
the concrete list

equivalent to Map2

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List Sort

Unsort

Structure
Finder and

Custom
Solvers apply
on this sorted

list

(Fold Union
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1])))))

Inverse Transformations

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

(Fold Union
 (Unsort <1 5 0 3 4 2>
 (Tabulate (i 6)
 (Rotate [0, 0, 60 * i])
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1]))))))

Custom solvers
on the sorted

outer list

GoalMap2 Outer List

Tabulate<1 5 0 3 4 2>

Unsort

Union

Fold

[0, 0, 180][0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 240] [0, 0, 60]

List Sort

Unsort

Structure
Finder and

Custom
Solvers apply
on this sorted

list

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Inverse Transformations

Syntactic rewrite
to eliminate

Unsort

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

(Fold Union
 (Unsort <1 5 0 3 4 2>
 (Tabulate (i 6)
 (Rotate [0, 0, 60 * i])
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1]))))))

Fold Union is invariant
to list order

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Custom solvers
on the sorted

outer list

Inverse Transformations

Syntactic rewrite
to eliminate

Unsort

(Union
 (Cylinder [1, 5, 5])
 (Fold Union
 (Tabulate (i 6)
 (Rotate [0, 0, 60i]
 (Translate [1,−0.5,0]

 (Cuboid [10, 1, 1]))))))

Goal

(Fold Union
 (Unsort <1 5 0 3 4 2>
 (Tabulate (i 6)
 (Rotate [0, 0, 60 * i])
 (Translate [1, −0.5, 0]
 (Cuboid [10, 1, 1]))))))

Fold Union is invariant
to list order

(Fold Union
 (Unsort <1 5 0 3 4 2> (Sort <1 5 0 3 4 2>
 (Map2 Rotate
 (Unsort <1 5 0 3 4 2> (Tabulate (i 6) [0, 0, 60 * i]))
 (Repeat 6
 (Translate [1, −0.5, 0]

 (Cuboid [10, 1, 1])))))))

Custom solvers
on the sorted

outer list

Rewrites applied until saturation (or timeout)
and a cost function (AST size) used to

extract best program

Example transformations: sorting, partitioning,
cartesian-to-spherical

Implementation

~ 2000 LOC in Rust

65 rewrites

https://github.com/uwplse/szalinski

Uses the Egg E-graph library: https://github.com/mwillsey/egg

Talk to Max about Egg!

End-to-End Evaluation Results of
running

Szalinski on
outputs of

Reincarnate*

A
ST

 s
iz

e

0

100

200

300

400

Benchmarks

Input AST size Output AST size

* [ICFP 2018]

2127 programs from Thingiverse

Tiny: AST size < 30

Small: 30 < AST size < 100

Medium: 100 < AST size < 300

Large: AST size > 300

Larger programs shrink more

< 1 second

Scalability
%

 sh
ru

nk

Tiny Small Medium Large

0

20

40

60

80

100

Examples

(Fold Difference
 (List (Union
 (Cylinder [100, 80, 80])
 (Cylinder [50, 120, 120]))
 (Translate [0, 0, -1] (Cylinder [102, 25, 25]))
 (Fold Union (Tabulate (i 60)
 (Rotate [0, 0, 6 * i]
 (Translate [125, 0, 0]
 (Scale [2.5, 1, 1]
 (Rotate [0, 0, 45]
 (Translate [0, 0, 25]
 (Cuboid [10, 10, 52]))))))))))

(Fold Union
 (Tabulate (i 10) (j 5)
 (Translate
 [12.2 * i + 12.2, 12.2 * j + 12.2, 0]
 (Difference
 (Cylinder [13, 7.1, 7.1])
 (Translate [0, 0, 3]
 (Cylinder [11, 5.1, 5.1]))))))

350 LOC 250 LOC

(Fold Union
 (Tabulate (i 12)
 (Translate [0, 13* i, 0]
 (Fold Difference
 (List
 (Cuboid [53.1 14.5 58])
 (Translate [1.5, 1.5, 1.5]
 (Cuboid [51.6, 11.5, 56.6]))
 (Translate [0 0 58]
 (Rotate [0, 45, 0]
 (Cuboid [101.5, 14.5, 100]))))))))

100 LOC

Szalinski: A Tool for Synthesizing Structured CAD Models with
Equality Saturation and Inverse Transformations

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman, Zachary Tatlock

https://github.com/uwplse/szalinski

Inverse Transformations
with E-graphs to find
concise, structured

programs in
< 1 second

