Functional Programming for Compiling and Decompiling Computer-Aided Design

Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman, Zachary Tatlock ICFP 2018

The 3D Printing Revolution

Forbes

Billionaires

Innovation

No Donor Required: 5 Body Parts You Can Make With 3-D Printers

ENABLING THE FUTURE

A Global Network Of Passionate Volunteers Using 3D Printing To Give The World A "Helping Hand."

3D-printed prosthetic limbs: the next revolution in medicine

Democratized Fabrication

PLSE printed!

Hardware cost has gone down!

Democratized Fabrication

Design tools challenges

- steep learning curve
- lack of specifications
- expensive

printed!

idware st has jone

Democratized Fabrication

Simple mesh editing broke model

No abstraction

Move around the vertices manually

Automatically infer CAD from Mesh!

 $: mesh \rightarrow cad$

Higher level of abstraction

Easier to visualize outcome

er

1600 LOC


```
© Note that the second second
```

```
difference (
    scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
    scale (7.0, 6.06, 5.0) (
    polyhedron 6 ))
...

80 LOC
```


1600 LOC

Rotating by 35 degrees solved the problem!

```
difference (
    scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
    scale (7.0, 6.06, 5.0) (
    polyhedron 6 ))
...

80 LOC
```



```
difference (
    scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
    scale (7.0, 6.06, 5.0) (
    rotateZ (35.0)
    polyhedron 6 )))
```


print

1600 LOC

Rotating by 35 degrees solved the problem!

success

```
difference (
    scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
    scale (7.0, 6.06, 5.0) (
    polyhedron 6 ))
...

80 LOC
```

modify

```
difference (
    scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
    scale (7.0, 6.06, 5.0) (
    rotateZ (35.0)
    polyhedron 6 )))
```

```
P P Single P
```

```
difference (
    scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
    scale (7.0, 6.06, 5.0) (
    polyhedron 6 ))
```

Automatically infer CAD from Mesh!

 $: mesh \rightarrow cad$

success

trans (49.0, 13.0, 2.5) (
scale (7.0, 6.06, 5.0) (
rotateZ (35.0)

polyhedron 6)))

How?

P

Key insight: view the computational fabrication pipeline as a compiler

How?

-

Key insight: view the computational fabrication pipeline as a compiler

PL foundations applied to computational fabrication to provide *clarity* and *usefulness*

Clarity

Denotational semantics, inductive definitions

Proof of correctness of a compiler from CAD to mesh

Usefulness

Program synthesis to reverse engineer CAD from mesh

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
- Usefulness: the <u>first</u> decompiler from mesh to CAD

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
- Usefulness: the <u>first</u> decompiler from mesh to CAD

3D printing workflow


```
difference (
    scale (97, 25, 5) (
        cube
    )
    trans (10, 13, 0) (
        scale (5, 5, 5) (
            polyhedron 6
        )
    ...
    ))
```



```
difference (
    scale (97, 25, 5) (
        cube
    )
    trans (10, 13, 0) (
        scale (5, 5, 5) (
            polyhedron 6
        )
    ...
    ))
```



```
G1 X79.629 Y66.912 E0.0020 F1200
G1 X81.530 Y65.814 E0.0875
G1 X81.581 Y65.800 E0.0896
G1 X118.419 Y65.800 E1.5231
G1 X118.469 Y65.814 E1.5251
G1 X120.371 Y66.912 E1.6106
G1 X120.409 Y66.949 E1.6126
G1 X138.827 Y98.851 E3.0461
G1 X138.841 Y98.902 E3.0482
G1 X138.841 Y101.098 E3.1336
G1 X138.827 Y101.149 E3.1357
G1 X120.409 Y133.051 E4.5692
G1 X120.371 Y133.088 E4.5712
G1 X118.469 Y134.186 E4.6567
G1 X118.419 Y134.200 E4.6588
G1 X81.581 Y134.200 E6.0923
G1 X81.530 Y134.186 E6.0943
G1 X79.629 Y133.088 E6.1798
```

G-code


```
difference (
    scale (97, 25, 5) (
        cube
    )
    trans (10, 13, 0) (
        scale (5, 5, 5) (
            polyhedron 6
        )
    ...
```


4. Print

SAILFISH

G1 X79.629 Y66.912 E0.0020 F1200 G1 X81.530 Y65.814 E0.0875 G1 X81.581 Y65.800 E0.0896 G1 X118.419 Y65.800 E1.5231 G1 X118.469 Y65.814 E1.5251 G1 X120.371 Y66.912 E1.6106 G1 X120.409 Y66.949 E1.6126 G1 X138.827 Y98.851 E3.0461 G1 X138.841 Y98.902 E3.0482 G1 X138.841 Y101.098 E3.1336 G1 X138.827 Y101.149 E3.1357 G1 X120.409 Y133.051 E4.5692 G1 X120.371 Y133.088 E4.5712 G1 X118.469 Y134.186 E4.6567 G1 X118.419 Y134.200 E4.6588 G1 X81.581 Y134.200 E6.0923 G1 X81.530 Y134.186 E6.0943 G1 X79.629 Y133.088 E6.1798

G-code

Part

G1 X79.629 Y66.912 E0.0020 F1200 G1 X81.530 Y65.814 E0.0875 G1 X81.581 Y65.800 E0.0896 G1 X118.419 Y65.800 E1.5231 G1 X118.469 Y65.814 E1.5251 G1 X120.371 Y66.912 E1.6106 G1 X120.409 Y66.949 E1.6126 G1 X138.827 Y98.851 E3.0461 G1 X138.841 Y98.902 E3.0482 G1 X138.841 Y101.098 E3.1336 G1 X138.827 Y101.149 E3.1357 G1 X120.409 Y133.051 E4.5692 G1 X120.371 Y133.088 E4.5712 G1 X118.469 Y134.186 E4.6567 G1 X118.419 Y134.200 E4.6588 G1 X81.581 Y134.200 E6.0923 G1 X81.530 Y134.186 E6.0943 G1 X79.629 Y133.088 E6.1798

4. Print

**

Part

G-code

G-code

2. Compile

Mesh

G1 X79.629 Y66.912 E0.0020 F1200 G1 X81.530 Y65.814 E0.0875 G1 X81.581 Y65.800 E0.0896 G1 X118.419 Y65.800 E1.5231 G1 X118.469 Y65.814 E1.5251 G1 X120.371 Y66.912 E1.6106 G1 X120.409 Y66.949 E1.6126 G1 X138.827 Y98.851 E3.0461 G1 X138.841 Y98.902 E3.0482 G1 X138.841 Y101.098 E3.1336 G1 X138.827 Y101.149 E3.1357 G1 X120.409 Y133.051 E4.5692 G1 X120.371 Y133.088 E4.5712 G1 X118.469 Y134.186 E4.6567 G1 X118.419 Y134.200 E4.6588 G1 X81.581 Y134.200 E6.0923 G1 X81.530 Y134.186 E6.0943 G1 X79.629 Y133.088 E6.1798

Part

difference (
 scale (97, 25, 5) (
 cube
)
 trans (10, 13, 0) (
 scale (5, 5, 5) (
 polyhedron 6
)
 ...
))

CAD

2. Compile

Decompile

iterate

4. Print

G1 X79.629 Y66.912 E0.0020 F1200 G1 X81.530 Y65.814 E0.0875 G1 X81.581 Y65.800 E0.0896 G1 X118.419 Y65.800 E1.5231 G1 X118.469 Y65.814 E1.5251 G1 X120.371 Y66.912 E1.6106 G1 X120.409 Y66.949 E1.6126 G1 X138.827 Y98.851 E3.0461 G1 X138.841 Y98.902 E3.0482 G1 X138.841 Y101.098 E3.1336 G1 X138.827 Y101.149 E3.1357 G1 X120.409 Y133.051 E4.5692 G1 X120.371 Y133.088 E4.5712 G1 X118.469 Y134.186 E4.6567 G1 X118.419 Y134.200 E4.6588 G1 X81.581 Y134.200 E6.0923 G1 X81.530 Y134.186 E6.0943 G1 X79.629 Y133.088 E6.1798

G-code

Part

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
- Usefulness: the <u>first</u> decompiler from mesh to CAD

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
 - Denotational semantics for CAD and mesh
 - Inductive compiler definition
 - Proof of correctness for compiler
- Usefulness: the <u>first</u> decompiler from mesh to CAD

scale (5, 5, 5) polyhedron 6


```
difference (
  scale (97, 25, 5) (
    cube
  trans (10, 13, 0) (
    scale (5, 5, 5) (
      polyhedron 6
```


rotateX rotateY rotateZ translation scale c ::= Empty | Cube $| Polyhedron \mathbb{N}$ $| Affine \mathbb{R}^{3 \times 3} \mathbb{R}^3 c$ | Binop op c c

 $egin{array}{lll} op & ::= & Union & & \\ & & Difference & & \\ & & Intersection & & \end{array}$

Linear transformation matrix: $\mathbb{R}^{3\times3}$

Vector: \mathbb{R}^3

CAD: Denotational semantics

 $[\![c]\!]_{cad}: \{all\ points\ inside\ c\}$

$$[Empty]_{cad} = \{\}$$

$$[Cube]_{cad} = \{(0,1)^3\}$$

$$[Affine \ p \ q \ c]_{cad} = \{pv + q | v \in [c]_{cad}\}$$

$$[Binop\ Union\ c_1\ c_2]_{cad} = [[c_1]_{cad} \cup [[c_2]_{cad}]_{cad}$$
Regular opens

Mesh

List of faces

A face is a triangular plane

Convenient for geometric operations

CAD tool agnostic

Standard format for 3D models

Widely shared in online repositories

Mesh: Denotational semantics

 $[\![m]\!]_{mesh}: \{all\ points\ inside\ m\}$

pt is inside m iff a ray starting at pt crosses an **odd** number of faces of m

Key insight: view the computational fabrication pipeline as a compiler

CAD is based on solid geometry, mesh is based on surface geometry

We need tools that relate these two different representations

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
 - Denotational semantics for CAD and mesh

- Inductive compiler definition
- Proof of correctness for compiler
- Usefulness: the <u>first</u> decompiler from mesh to CAD

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
 - Denotational semantics for CAD and mesh

- Inductive compiler definition
- Proof of correctness for compiler
- Usefulness: the <u>first</u> decompiler from mesh to CAD

Compiling CAD to mesh

 $compile: c \rightarrow m$

compile $cube = m_{cube} <$

compile (Affine $p \ q \ c$) = $map_{vertex}(\lambda v . pv + q)$ (compile c)

 $compile\ (Binop\ \cup\ c_1\ c_2) = meshBinop(\ \cup\)\ (compile(c_1),\ compile(c_2))$

Regular opens at mesh level too: check normals!

cube trans (2, 0, 0) cube

```
union cube trans (2, 0, 0) cube \longrightarrow C \begin{bmatrix} union \\ [.] \\ trans (2, 0, 0) cube \end{bmatrix} \begin{bmatrix} cube \end{bmatrix}
```


TRICKY when faces overlap!

Need to split meshes w.r.t one another to resolve overlaps

Evaluation contex

[.] union

Mesh [m_{cube}]
Mesh [m_{trans (2, 0, 0) cube}]

Need to determine which faces from $compile(c_1)$ and $compile(c_2)$ to keep in the final mesh

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
 - Denotational semantics for CAD and mesh

- Inductive compiler definition
- Proof of correctness for compiler
- Usefulness: the first decompiler from mesh to CAD

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
 - Denotational semantics for CAD and mesh

Inductive compiler definition

- Proof of correctness for compiler
- Usefulness: the <u>first</u> decompiler from mesh to CAD

Compiler Proof

 $Thm: \forall e, \llbracket compile \ e \rrbracket_{mesh} = \llbracket e \rrbracket_{cad}$

Proof: By induction on e

- Case Primitives: ...
- Case Affine Transformations: ...
- Case Union:

Compiler Proof

$$Thm: \forall e, \llbracket compile\ e \rrbracket_{mesh} = \llbracket e \rrbracket_{cad}$$

Proof: By induction on e

- Case Primitives: ...
- Case Affine Transformations: ...
- Case Union:

Union lemma

$$[\![meshBinop\ (Union)\ (m_1,m_2)]\!]_{mesh} = [\![m_1]\!]_{mesh} \cup [\![m_2]\!]_{mesh}$$

Compiler Proof

$$Thm: \forall e, \llbracket compile\ e \rrbracket_{mesh} = \llbracket e \rrbracket_{cad}$$

Union lemma

$$[meshBinop\ (Union)\ (m_1, m_2)]_{mesh} = [m_1]_{mesh} \cup [m_2]_{mesh}$$

$$let\ m_3 = mBop\ (Union)\ (m_1, m_2)$$

$$pt \in [m_3]_{mesh} \iff pt \in [m_1]_{mesh} \cup [m_2]_{mesh}$$

Use Ray casting

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
 - Denotational semantics for CAD and mesh

- Inductive compiler definition
- Proof of correctness for compiler
- Usefulness: the <u>first</u> decompiler from mesh to CAD

Talk Outline

- 3D Printing Workflow
- Clarity achieved by applying FP to fabrication
 - Denotational semantics for CAD and mesh

- Inductive compiler definition
- Proof of correctness for compiler
- Usefulness: the <u>first</u> decompiler from mesh to CAD

- We have small step operational semantics.
- Get synthesis by "just flipping the arrows"!

```
Mesh [Mtrans (2, 0, 0) cube]
                                                                                  trans (2, 0, 0) cube
                                                Mesh [mtrans (2, 0, 0) cube]
```


Eval context is geometric context!

Eval context is geometric context!

Eval context is geometric context!

union

sphere 5 trans (0, 0, 5) sphere 3 In the **context** of **union**, the top can be replaced by a sphere, even though it does not match a sphere primitive

Oracles: Primitive Detection

cube

- > rotateX (30)
- > rotateY (45)
- > rotateZ (60)
- > scale (2, 3, 4)
- > traslate (1, 2, 3)

$$p \in \Omega_{prim}(m)$$

Mesh $m \to_{\Omega} p$

Oracles: Primitive Detection

Rotation:

Find an object coordinate system

Align it with the world's coordinates

Scale:

Scale the object down to unit dimensions

Translate:

Move the object back to origin

cube

- > rotateX (30)
- > rotateY (45)
- > rotateZ (60)
- > scale (2, 3, 4)
- > traslate (1, 2, 3)

Apply affine transformations to primitive in reverse order

Oracles: Subtractive

$$(m_1, m_2) \in \Omega_{sub}(m)$$

Mesh $m \to_{\Omega} Binop \ Diff (Mesh \ m_1) \ (Mesh \ m_2)$

Oracles: Subtractive

Many possible bounding primitives

Oracles: Subtractive

p_{best} = argmin_p volume of difference(p, m)

$$(m_1, m_2) \in \Omega_{add}(m)$$

Mesh $m \to_{\Omega} Binop Union (Mesh m_1) (Mesh m_2)$

Infinite ways to split a mesh!

Infinite ways to split a mesh!

Disjoint splits
Convex splits

Infinite ways to split a mesh!

Disjoint splits
Convex splits

Infinite ways to split a mesh!

Disjoint splits
Convex splits

Convex split:
Split mesh along
plane where
convexity
changes

Synthesis: flip the arrows!

Mesh [...]

$$\Omega_{prim} = scale (3, 1, 1) cube$$
 $\Omega_{prim} = trans (1, 0, 0) cube$

 $\Omega_{prim} = scale (3, 1, 1) cube$ $\Omega_{prim} = trans (1, 0, 0) cube$

Pick best based on ranking function

Implementations in OCaml

25,000 LOC: Supports 1D, 2D, 3D CAD & Mesh

Floating points, MPFR, Exact Arithmetic Number Systems Points, lines, planes, intersections, area Geometry Affine transf, binary ops, hull, mesh split Meshes CAD primitives, compiler implementation **CADs** Geom oracles, search algorithm, ranking Synthesis

https://github.com/uwplse/reincarnate-aec

Implementations in OCaml

25,000 LOC: Supports 1D, 2D, 3D CAD & Mesh

https://github.com/uwplse/reincarnate-aec

ICFP (our design)

Hexagonal Candle Holder

Ultimate 22 Hex-Wrench Holder

40mm Cube Test Object

25mm Calibration with Empty Top

Measuring Cylinder

Basic Box with Lid

Modular Memory Holder (USB)

Circle Cell Block Generator

Jewelry Box with Inlay

SD Card Rack

Gordian knot 3D Puzzle

Results

Conclusions

Functional PL for fabrication (3D printing)

Clarity: semantics and compiler correctness

Usefulness: the first decompiler from mesh to CAD

Functional PL for fabrication (3D printing)

Clarity: semantics and compiler correctness

Usefulness: the **first** decompiler from mesh to CAD

Check out our web IDE! — Adam Anderson http://reincarnate.uwplse.org/

https://github.com/uwplse/reincarnate-aec

