Functional Programming for
Compiling and Decompiling
Computer-

Chandrakana Nandi, James R. Wilcox, Pavel Panchekna, Taylor Blau,
Dan Grossman, Zachary Tatlock
ICFP 2018

e auenscioo. BBP| SE

1he 3D Printing Revolution

F()rbes Billionaires Innovation

No Donor Required: 5 Body Parts
You Can Make With 3-D Printers

A pretzel made with a new 3-D printing technique that s fused silica glass

Broke a Glass? Someday You
Might 3-D-Print a New One

SSSSSSSSSSSSSSSSS

5 @ How 3-D-Printed Prosthetic Hands
X, _‘.5 Are Changing These Kids’ Lives

fwyg

3D-printed prosthetic limbs: the next
revolution in medicine

Democratized Fabrication

Hardware
COSt has

gone
down!

Democratized Fabrication

Design tools challenges

— steep learning curve
— lack of specifications

— expensive

Democratized Fabrication

Design tools challenges
— steep learning curve

— lack of specifications

— expensive —
i
T GRAB

Online repositories

A mesh for a hex holder

Triangular mesh

A mesh for a hex holder

T

‘ Bent wrench not parallel to the rest :

Need to rotate the fifth hole

A mesh for a hex holder

T

Simple mesh editing broke model

No abstraction

Move around the vertices manually

A mesh for a hex holder

MR L S aha e

CAD (Computer Aided Design) editing is easier

Higher level of abstraction

Easier to visualize outcome

A mesh for a hex holder

Automatically infer CAD from Mesh!

$R) . mesh — cad

L

1600 LOC

difference (
scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
scale (7.0, 6.06, 5.0) (
polyhedron 6))

1600 LOC

difference (
scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
scale (7.0, 6.06, 5.0) (
polyhedron 6))

1600 LOC

Rotating by 35
degrees solved the
problem!

difference (
scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (

scale (7.0. 6.06, 5.0) (
rotateZ (35.0)
polyhedron b))) M

difference (
scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (
scale (7.0, 6.06, 5.0) (
polyhedron 6))

1600 LOC

Rotating by 35
degrees solved the
problem!

difference (
scale (97.0, 25.0, 5.0) cube

trans (49.0, 13.0, 2.5) (

scale (7.0. 6.06, 5.0) (
rotateZ (35.0)
polyhedron b))) M

SUCCEesSS

Automatically infer CAD from Mesh!

$R) . mesh — cad

[&»s¢

How"?

Key Insight: view the computational
fabrication pipeline as a compller

How"?

Key Insight: view the computational
fabrication pipeline as a compller

PL foundations applied to computational fabrication to
porovide clarity and usefulness

Clarity
Denotational semantics, inductive definitions
Proof of correctness of a compiler from CAD to mesh

Usefulness

Program synthesis to reverse engineer CAD from mesh

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication

® Usefulness: the first decompiler from mesh to CAD

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication

® (Jsefulness: the first decompiler from mesh to CAD

3D printing workflow

SolidWorks

CAD

difference (
scale (97, 25, 5) (
cube

)
trans (10, 13, 0) (

scale (5, 5, 5) (
polyhedron 6

CAD

difference (
scale (97, 25, 5) (

cube 2. Compile

)
trans (10, 13, 0) (

scale (5, 5, 5) (
polyhedron 6

SolidWorks

CAD

difference (
scale (97, 25, 5) (

cube 2. Compile

)
trans (10, 13, 0) (

scale (5, 5, 5) (
polyhedron 6

SolidWorks

X81.530 Y65.814 E0.0875

X81.581 Y65.800 E0.0896

X118.419 Y65.800 E1.5231
X118.469 Y65.814 E1.5251
X120.371 Y66.912 E1.6106
X120.409 Y66.949 E1.6126
X138.827 Y98.851 E3.0461
X138.841 Y98.902 E3.0482

X138.841 Y101.098 E3.1336
X138.827 Y101.149 E3.1357
X120.409 Y133.051 E4.5692
X120.371 Y133.088 E4.5712
X118.469 Y134.186 E4.6567
X118.419 Y134.200 E4.6588
X81.581 Y134.200 E6.0923

X81.530 Y134.186 E6.0943

X79.629 Y133.088 E6.1798

G-code

CAD

difference (
scale (97, 25, 5) (

cube 2. Compile

)
trans (10, 13, 0) (

scale (5, 5, 5) (
polyhedron 6

X81.530 Y65.814 E0.0875

X81.581 Y65.800 E0.0896

X118.419 Y65.800 E1.5231
X118.469 Y65.814 E1.5251
X120.371 Y66.912 E1.6106
X120.409 Y66.949 E1.6126
X138.827 Y98.851 E3.0461
X138.841 Y98.902 E3.0482

X138.841 Y101.098 E3.1336
X138.827 Y101.149 E3.1357
X120.409 Y133.051 E4.5692
X120.371 Y133.088 E4.5712
X118.469 Y134.186 E4.6567
X118.419 Y134.200 E4.6588

“»', a
IJ X81.581 Y134.200 E6.0923
I~ SAILFISH X81.530 Y134.186 E6.0943

X79.629 Y133.088 E6.1798

G-code

4. Print

CAD

difference (
scale (97, 25, 5) (

cube 2. Compile

)
trans (10, 13, 0) (

scale (5, 5, 5) (
polyhedron 6

X81.530 Y65.814 E0.0875

X81.581 Y65.800 E0.0896

X118.419 Y65.800 E1.5231
X118.469 Y65.814 E1.5251
X120.371 Y66.912 E1.6106
X120.409 Y66.949 E1.6126
X138.827 Y98.851 E3.0461
X138.841 Y98.902 E3.0482

X138.841 Y101.098 E3.1336
X138.827 Y101.149 E3.1357
X120.409 Y133.051 E4.5692
X120.371 Y133.088 E4.5712
X118.469 Y134.186 E4.6567
X118.419 Y134.200 E4.6588

-»“;.'1 a
IJ X81.581 Y134.200 E6.0923
I~ SAILFISH X81.530 Y134.186 E6.0943

X79.629 Y133.088 E6.1798

G-code

4. Print

CAD

difference (
scale (97, 25, 5) (

cube 2. Compile

)
trans (10, 13, 0) (q

scale (5, 5, 5) (
polyhedron 6

SolidWorks

X81.530 Y65.814 E0.0875

X81.581 Y65.800 E0.0896

X118.419 Y65.800 E1.5231
X118.469 Y65.814 E1.5251
X120.371 Y66.912 E1.6106
X120.409 Y66.949 E1.6126
X138.827 Y98.851 E3.0461
X138.841 Y98.902 E3.0482

X138.841 Y101.098 E3.1336
X138.827 Y101.149 E3.1357
X120.409 Y133.051 E4.5692
X120.371 Y133.088 E4.5712
X118.469 Y134.186 E4.6567
X118.419 Y134.200 E4.6588

.

o (Ma Lin)

we | X81.581 Y134.200 E6.0923
. S SAILFISH X81.530 Y134.186 E6.0943

iterate

4. Print

X79.629 Y133.088 E6.1798

G-code

CAD

difference (
scale (97, 25, 5) (

cube 2. Compile

)
trans (10, 13, 0) (

scale (5, 5, 5) (
polyhedron 6

Decompile

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication

® (Jsefulness: the first decompiler from mesh to CAD

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication
® Denotational semantics for CAD and mesh

® |nductive compiler definition

® Proof of correctness for compiler

® Usefulness: the first decompiler from mesh to CAD

3D primitive
representing a

cube of unit
length

3D primitive

CAD
representing a
cube of unit

length

3D primitive

representing a
hexagonal

orism

polyhedron 6 b

scale (5, 5, 5) polyhedron 6

CAD

difference (-
scale (97, 25, 5) (
cube
)
trans (10, 13, 0) (
scale (9, 95, 5) (
polyhedron 6

) -~

)

CAD

rotateX T gzzz ty

otatey Polyhedron N

'otate/ A fiine R33 R3 ¢

translation " Binop op c

scale Linear

e : transformation
op ::= Union atriy: R3x3

Difference |
Intersection

Vector: R3

CAD: Denotational semantics

¢l caq : {all points inside c}

[Empty|caa = {} | — |
[Cube|caq = {(0, 1)3}<l | %

[Affine p q]caa = {pv + ¢q|v € []cad}

[Binop Union ¢1 ¢2]cad = [C1]caa U [c2]cad

Regular opens

Mesnh

A face Is a triangular plane

Convenient for geometric operations
CAD tool agnostic

Standard format for 3D models
Widely shared in online repositories

Mesh: Denotational semantics

I mesn @ {all points inside m}

ptis inside m iff a ray

starting at pt crosses an
odd number of faces of m

Key insight: view the computational fabrication pipeline as a compiler

CAD is based on solid geometry, mesh is based on surface geometry

We need tools that relate these two different representations

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication
® Denotational semantics for CAD and mesh \/

® |nductive compiler definition

® Proof of correctness for compiler

® Usefulness: the first decompiler from mesh to CAD

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication
® Denotational semantics for CAD and mesh \/

® |[nductive compiler definition

® Proof of correctness for compiler

® Usefulness: the first decompiler from mesh to CAD

Compiling CAD to mesh

compile : ¢ > m

compile cube = My~
compile (Affine p q ¢) = map,,,,,.(Av.pv + q) (compile c)

compile (Binop U c¢;| ¢,) = meshBinop(U) (compile(c,), compile(c,))

Regular opens at mesh level too: check normals!

N=0 @ =

Compiler on an example

cube
trans (2, O, O) cube

Compiler on an example

Compiler on an example

union — union
cube —]
trans (2, O, O) cube C trans (2, O, O) cube

[Cube]
—valuation context

Compiler on an example

union

union union
cube — (] >]
trans (2, 0, 0) cube C trans (2, 0, 0) cube C trans (2, O, O) cube

[Cube] [Mesh [Mcube]]

Compiler on an example

union

union union
cube — (] >]
trans (2, 0, 0) cube C trans (2, 0, 0) cube C trans (2, O, O) cube

[Cube] [Mesh [Meube]]
—valuation context
e
iy
union
Mesh [Mcube]
[.]

[trans (2, O, O) cube]

Compiler on an example

union

union union
cube — (] >]
trans (2, O, O) cube C trans (2, O, O) cube C trans (2, O, O) cube

[Cube] [Mesh [Mcube]]
(Evaiuation comtort)
l%c

union union
Mesh [Mcube] G Mesh [Mcube]
] C]

[Mesh [Mtrans @, 0, 0) cuoe]] [trans (2, O, O) cube]

Compiler on an example

union

union union
cube — (] >]
trans (2, O, O) cube C trans (2, O, O) cube C trans (2, O, O) cube

[Cube] [Mesh [Mcube]]
(Evaiuation comtort)
l%c

[.] union union union
Mesh [mcube] & Mesh [mcube] (— Mesh [mcube]
Mesh [Mirans 2,0, 0) cube] C [.] C [.]

[Mesh [Mtrans @, 0, 0) cuoe]] [trans (2, O, O) cube]

Compiler on an example

union

union union
cube — (] >]
trans (2, 0, 0) cube C trans (2, 0, 0) cube C trans (2, O, O) cube

[Cube] [Mesh [Mcube]]
(Evaiuation comtort)
l%c

[.] union union union
Mesh [mcube] & Mesh [mcube] & Mesh [mcube]
Mesh [Mirans 2,0, 0) cube] C [.] C [.]

l [Mesh [Mtrans @, 0, 0) cuoe]] [trans (2, O, O) cube]
C

Mesh [...]

Compiler on an example

TRICKY when faces overlap!

Need to split meshes w.r.t one
another to resolve overlaps

] union Need to determine which faces from
Mesh [Meuse compile(c;) and compile(cz) 10 keep

Mesh [mtrans 2,0,0) Cube] . .
IN the final mesh

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication
® Denotational semantics for CAD and mesh \/

® |[nductive compiler definition J

® Proof of correctness for compiler

® Usefulness: the first decompiler from mesh to CAD

Talk Outline

® 3D Printing Workflow

® Clarity achieved by applying FP to fabrication
® Denotational semantics for CAD and mesh \/

® |nductive compiler definition \/

® Proof of correctness for compiler

® Usefulness: the first decompiler from mesh to CAD

Compiler Proof

Thm : Ve, [compile €]mesn = [[€]cad

Proof: By induction on e

— (Case Primitives: ...
— (Case Affine Transformations: ...

— Case Union:

Compiler Proof

Thm : Ve, [compile €]mesn = [[€]cad

Proof: By induction on e

— (Case Primitives: ...
— (Case Affine Transformations: ...

— Case Union:

Union lemma

ImeshBinop (Union) (m1,m2)||lmesh = [m1]mesn U [ma]mesh

Compiler Proof

Thm : Ve, [compile €]mesn = [[€]cad

Union lemma

ImeshBinop (Union) (m1,m2)|lmesh = [m1]mesn U [ma]mesn

let mg = mBop (Union) (mq, ms)

pt - ﬂmSHmesh — pt - ﬂml]]mesh U ﬂmQ]]mesh

—Ray casting

Case: overlapping meshes

Case: overlapping meshes

Case: overlapping meshes

pt

Union lemma

~
[meshBinop (Union) (m1,m2)]|mesh = [M1]mesh U [M2]mesh

let mg = mBop (Union) (m1, mz2)

pt € [[m3]]mesh — pt € [[mlﬂmesh \ [[mlﬂmesh

[Use Ray casting |

Sufficient to show that h crosses an
odd number of faces of ma Iff It

crosses an odd number of edges of
M4 O Mo

Case: overlapping meshes

Divide h into 4 sub-regions

Since meshes are split,
sufficient to show that h;
IS INside ma Iff It IS INnside
M4 Or My

See paper for more details

Talk Outline

® 5D Printing Worktlow

® Clarity achieved by applying FP to fabrication
® Denotational semantics for CAD and mesh \/

® |nductive compiler definition J

® Proof of correctness for compiler \/

® Usefulness: the first decompiler from mesh to CAD

Talk Outline

® 5D Printing Worktlow

® Clarity achieved by applying FP to fabrication
® Denotational semantics for CAD and mesh \/

® |nductive compiler definition J

® Proof of correctness for compiler \/

® Usefulness: the first decompiler from mesh to CAD

Synthesis: flip the arrows!

union union union
cube []]
trans (2, O, 0) Cube_>c trans (2, 0, 0) cube — C trans (2, O, O) cube
[Cube] [Mesh [Mcube]]
Ic
w

[.] union union union

Mesh [Mcube] L Mesh [Mcube] < Mesh [Mcube]

Mesh [Mirans 2,0, 0) cube] C [.] C [.]

[Mesh [Mtrans @, 0, 0) cuoe]] [trans (2, O, O) cube]

be

Mesh [...]

Synthesis: flip the arrows!

union union pa— union
cube §_ [[] S []]
C

trans (2, O, 0) Cube_)c trans (2, 0, 0) cube e trans (2, O, O) cube
[Cube] [Mesh [Mcube]]
el
w
[.] union _:fg' union _::S’ union
Mesh [Mcube] < Mesh [Mcube] < Mesh [Mcube]
Mesh [Mirans 2,0, 0) cube] C [.] C [.]

[Mesh [Mtrans @, 0, 0) cuoe]] [trans (2, O, O) cube]

LAl

Mesh [...]

Synthesis: flip the arrows!

- Computational fabrication pipeline is a compller.
- We have small step operational semantics.
- Get synthesis by “just flipping the arrows”!

Synthesis: flip the arrows!

- L.oss of information

- Geometric challenges

- Non-deterministic

Synthesis: flip the arrows!

- Loss of information

- Geometric challenges

- Non-deterministic

Synthesis: flip the arrows!

- Loss of information

- Geometric ChaHengeS Geometric
oracles

- Non-deterministic

Synthesis: flip the arrows!

- Loss of information

cval context IS geometric context!

synthesize

Eval context iIs geometric context!

synthesize — synthesize

cval context IS geometric context!

synthesize — synthesize
: In the context of
u"'?}" 5 union, the top can be
tsp ereO 0. 5) sohere 3 replaced by a sphere, even
rans (0, 0, 9) sphere though it does not match a

sphere primitive

Synthesis: flip the arrows!

- Geometric challenges

(Geometric
oracles

Oracles : Primitive Detection

e

N L A

T ————

cube

rotateX (30)
rotateY (45)
rotateZ (60)

> scale (2, 3, 4)
> traslate (1, 2, 3)

p € ,,;,(m)

Mesh m —q p

Oracles : Primitive Detection

be

rotateX (30)
rotat
rotat
> scale (2, 3, 4)

Hotation: | > traslate (1, 2, 3)
Find an object coordinate system

Align it with the world’s coordinates
Scale:

Scale the object down to unit dimensions
Translate:

Move the object back to origin

N O T O

Spisn

Apply affir
transformations to
porimitive in
reverse order

Oracles : Subtractive

Bounding primitive Remaining mesh

(m;,my) € Q_,(m)

Mesh m — o Binop Diff (Mesh m;) (Mesh m,)

Oracles : Subtractive

/

9

sub

Bounding primitive Remaining mesh

Many
possible
bounding
porimitives

Oracles : Subtractive

/

9

sub

Bounding primitive Remaining mesh

Pbest = argming

volume of
difference(p, m)

Oracles : Additive

(my, my) € L, ;,(m)

Mesh m — Binop Union (Mesh m,) (Mesh m,)

Oracles : Additive

Infinite ways to
split a mesh!

Oracles : Additive

Infinite ways to
split a mesh!
Disjoint splits
Convex splits

Oracles : Additive

Disjoint split

Infinite ways to
split a mesh!

Disjoint splits
Convex splits

Oracles : Additive

N

Disjoint split

Convex spilit:
Split mesh along
plane where

— . B i convexity
Disjoint splits il changes
Convex splits |

Infinite ways to
split a mesh!

Synthesis: flip the arrows!

- Non-deterministic

Synthesis: try all three steps

Mesh [...]

Synthesis: try all three steps

Synthesis: try all three steps

Synthesis: try all three steps

Synthesis: try all three steps

Q im = cube .. =trans (1, 0, 0) cube

Su
ri
!
||
No >
match

Qprim = scale (3, 1, 1) cube Qp,,l-m = trans (1, 0, 0) cube

Synthesis: try all three steps

Q)

prim

= cube Q

prim

= trans (1, 0, 0) cube

union
cube
trans (2, O, 0) cube

Mesh [...]

difference
e scale (3, 1, 1) cube
- trans (1, O, O) cube
match
Qprim = scale (3, 1, 1) cube Qp,,l-m = trans (1, 0, 0) cube

Synthesis: try all three steps

Q)

prim

= cube Q

prim

= trans (1, 0, 0) cube

union
cube
trans (2, O, 0) cube

Mesh [...]

difference
e scale (3, 1, 1) cube
- trans (1, O, O) cube
match
Qprim = scale (3, 1, 1) cube Qp,,l-m = trans (1, 0, 0) cube

PIck best based on

ranking function

Implementations in OCaml

25,000 LOC: Supports 1D, 2D, 3D CAD & Mesh

Floating points, MPFR, Exact Arithmetic Number Systems
Points, lines, planes, intersections, area
Affine transt, binary ops, hull, mesh spilit

CAD primitives, compiler implementation

Geom oracles, search algorithm, ranking Synthesis

https://github.com/uwplse/reincarnate-aec

Implementations in OCaml

25,000 LOC: Supports 1D, 2D, 3D CAD & Mesh

Floating points, MPFR, Exact Arithmetic Number Systems

Points, line Geometry

Affine transt;omary ops, rom, rresn split Meshes

CAD primitives, compiler implementation CADs

Geom oracles, search algorithm, ranking Synthesis

https://github.com/uwplse/reincarnate-aec

ICFP (our design)

Hexagonal Candle Holder

Ultimate 22 Hex-Wrench Holder
40mm Cube Test Object

25mm Calibration with Empty Top
Measuring Cylinder

Basic Box with Lid

Modular Memory Holder (USB)

Circle Cell Block Generator
Jewelry Box with Inlay

SD Card Rack

Gordian knot 3D Puzzle

Conclusions

Functional PL for fabrication (3D printing)
Clarity: semantics and compiler correctness

Usefulness: the first decompiler from mesh to CAD

PAUL G. ALLEN SCHOOL s PLSE

OF COMPUTER SCIENCE & ENGINEERING

-unctional PL for fabrication (3D printing)

Clarity: semantics and compiler correctness

Usefulness: the first decompiler from mesh to CAD

Check out our web IDE! — Adam Anderson
http://reincarnate.uwplse.org/

https://github.com/uwplse/reincarnate-aec
o o SRGE e diPLSE

